CLIMA E GHIACCIAI

L’EVOLUZIONE DELLE RISORSE GLACIALI IN LOMBARDIA

A CURA DI
CLAUDIO SMIRAGLIA
GIANCARLO MORANDI
GUGLIELMINA DIOLAIUTI
CLIMA E GHIACCIAI.
L’EVOLUZIONE DELLE RISORSE GLACIALI IN LOMBARDIA

A cura di Claudio Smiraglia, Giancarlo Morandi & Guglielmina Diolaiuti

INDICE

<table>
<thead>
<tr>
<th>Autore/Contributo</th>
<th>Pagina</th>
</tr>
</thead>
<tbody>
<tr>
<td>GIANCARLO MORANDI</td>
<td>7</td>
</tr>
<tr>
<td>Presentazione</td>
<td></td>
</tr>
<tr>
<td>CLAUDIO SMIRAGLIA & GUGLIELMINA DIOLAIUTI</td>
<td>9</td>
</tr>
<tr>
<td>Introduzione</td>
<td></td>
</tr>
<tr>
<td>GIUSEPPE OROMBELLI</td>
<td>13</td>
</tr>
<tr>
<td>Ghiacciai e clima: 800.000 anni di storia del clima nelle “carote” di ghiaccio…</td>
<td></td>
</tr>
<tr>
<td>Le perforazioni profonde nei ghiacci polari</td>
<td>16</td>
</tr>
<tr>
<td>Quali informazioni danno le carote di ghiaccio?</td>
<td>17</td>
</tr>
<tr>
<td>La variabilità climatica: i cicli glaciali/interglaciali</td>
<td>19</td>
</tr>
<tr>
<td>La variabilità climatica alla scala del millennio</td>
<td>21</td>
</tr>
<tr>
<td>La variabilità alla scala dei secoli/decenni</td>
<td>22</td>
</tr>
<tr>
<td>I gas serra</td>
<td>23</td>
</tr>
<tr>
<td>Osservazioni conclusive</td>
<td>24</td>
</tr>
<tr>
<td>Bibliografia</td>
<td>25</td>
</tr>
<tr>
<td>CLAUDIO SMIRAGLIA & GUGLIELMINA DIOLAIUTI</td>
<td>29</td>
</tr>
<tr>
<td>Lo stato di salute dei ghiacciai lombardi: verso l’estinzione di una risorsa fondamentale?</td>
<td></td>
</tr>
<tr>
<td>Introduzione</td>
<td>31</td>
</tr>
<tr>
<td>Metodologie</td>
<td>33</td>
</tr>
<tr>
<td>Risultati</td>
<td>36</td>
</tr>
<tr>
<td>Le variazioni volumetriche</td>
<td>40</td>
</tr>
<tr>
<td>Variazioni frontali e bilanci di massa</td>
<td>41</td>
</tr>
<tr>
<td>Dinamica climatica</td>
<td>43</td>
</tr>
<tr>
<td>Conclusioni</td>
<td>47</td>
</tr>
<tr>
<td>Bibliografia</td>
<td>50</td>
</tr>
<tr>
<td>Titolo</td>
<td>Pagina</td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>MAURO GUGLIELMIN
IL PERMAFROST: LA COMPONENTE “INVISIBILE” DELLA CRIOSFERA</td>
<td>55</td>
</tr>
<tr>
<td>Introduzione</td>
<td>57</td>
</tr>
<tr>
<td>Metodi di individuazione del permafrost</td>
<td>59</td>
</tr>
<tr>
<td>Il permafrost come indicatore climatico</td>
<td>67</td>
</tr>
<tr>
<td>Distribuzione del permafrost in Italia e in Lombardia</td>
<td>70</td>
</tr>
<tr>
<td>Conclusioni</td>
<td>72</td>
</tr>
<tr>
<td>Bibliografia</td>
<td>72</td>
</tr>
<tr>
<td>GUGLIELMINA DIOLAIUTI, CLAUDIO SMIRAGLIA, GIANPIETRO VERZA, ROBERTO CHILLEMI & ERALDO MERALDI
LA RETE MICRO-METEOROLOGICA GLACIALE LOMBARDA: UN CONTRIBUTO ALLA CONOSCENZA DEI GHIACCIAI ALPINI E DELLE LORO VARIAZIONI RECENTI</td>
<td>75</td>
</tr>
<tr>
<td>Perché studiare i cambiamenti climatici nelle aree montane?</td>
<td>77</td>
</tr>
<tr>
<td>I ghiacciai: indicatori dei cambiamenti climatici in atto sulla catena alpina</td>
<td>78</td>
</tr>
<tr>
<td>Come rilevare i cambiamenti climatici in atto sulle Alpi</td>
<td>79</td>
</tr>
<tr>
<td>La micrometeorologia sopragliale</td>
<td>79</td>
</tr>
<tr>
<td>La rete di monitoraggio italiana</td>
<td>82</td>
</tr>
<tr>
<td>Le stazioni sopragliali lombarde</td>
<td>83</td>
</tr>
<tr>
<td>Le condizioni micrometeorologiche superficiali di un ghiacciaio alpino</td>
<td>82</td>
</tr>
<tr>
<td>Conclusioni</td>
<td>94</td>
</tr>
<tr>
<td>Bibliografia</td>
<td>95</td>
</tr>
<tr>
<td>DARIO BELLINGERI & ENRICO ZINI
IMMAGINI DAL CIELO PER LO STUDIO DELLE VARIAZIONI RECENTI DEI GHIACCIAI LOMBARDI</td>
<td>99</td>
</tr>
<tr>
<td>Sintesi dei dati utilizzati</td>
<td>100</td>
</tr>
<tr>
<td>Sintesi dei risultati sui comprensori glaciali investigati</td>
<td>101</td>
</tr>
<tr>
<td>Validazione della metodologia di stima con rilievo GPS-RTK</td>
<td>109</td>
</tr>
<tr>
<td>Conclusioni</td>
<td>113</td>
</tr>
<tr>
<td>Bibliografia</td>
<td>114</td>
</tr>
<tr>
<td>NICOLETTA CANNONE, GUGLIELMINA DIOLAIUTI, MAURO GUGLIELMIN & CLAUDIO SMIRAGLIA
IMPATTI INATTESI ED ACCELERATI DEL CAMBIAMENTO CLIMATICO SULLA VEGETAZIONE ALPINA E PERIGLACIALE</td>
<td>115</td>
</tr>
<tr>
<td>Introduzione</td>
<td>116</td>
</tr>
<tr>
<td>Aree di studio</td>
<td>117</td>
</tr>
<tr>
<td>Metodi</td>
<td>118</td>
</tr>
<tr>
<td>Risultati e discussione</td>
<td>119</td>
</tr>
</tbody>
</table>
Impatti accelerati del cambiamento climatico ... 121
Bibliografia .. 125

MANUELA PELFINI
LA VEGETAZIONE ARBOREA PER LA RICOSTRUZIONE DELL’EVOLUZIONE GLACIALE E DEL SEGNALE CLIMATICO ... 129
Introduzione .. 129
Il ritiro glaciale e l’ingresso della vegetazione arborea 130
Il riscaldamento climatico e l’innalzamento dei limiti altitudinali degli alberi .. 131
Il segnale climatico nelle cronologie delle conifere come base per gli studi dendroclimologici ... 133
La vegetazione arborea epiglaciaire per lo studio della dinamica dei Debris covered Glaciers ... 135
La vegetazione arborea e la ricostruzione della storia glaciale 137
Accrescimento arboreo e bilanci di massa ... 139
Conclusioni .. 140
Bibliografia .. 141

DANIELE BOCCHIOLA, EMANUELA BIANCHI JANETTI & RENZO ROSSO
GHIACCHI E FIUMI: PROBLEMI E POTENZIALITÀ DI UN RAPPORTO IN RAPIDA EVOLUZIONE.
IL CASO DEL “GHIACCIAIO NERO” DEL VENEROCOLO (BS) 143
Introduzione .. 143
Il caso di studio ... 145
Dati e metodi .. 146
Il modello idrologico .. 149
Risultati .. 150
Conclusioni .. 154
Bibliografia .. 158

GIANNI TARTARI, ANDREA LAMI, FRANCO SALERNO & DIEGO COPPETTI
I LAGHI ATTORI ATTIVI O PASSIVI DEI CAMBIAMENTI GLOBALI? 163
Introduzione .. 163
Influenze climatiche sui laghi ... 165
Il ruolo passivo .. 166
Il ruolo attivo .. 174
Conclusioni .. 176
Bibliografia .. 177
GIANCARLO MORANDI

PRESENTAZIONE

Nell’introdurre le relazioni che in questo libro presentano i risultati più aggiornati delle ricerche sulle tendenze attuali del glacialismo e sui suoi rapporti con l’evoluzione del clima, mi preme ricordare alcune delle mie riflessioni svolte all’inizio del dibattito che seguì la presentazione delle relazioni al convegno del 17 novembre 2007 presso l’Università degli Studi di Milano.

Vorrei ricordare un documento semplice ma quanto mai interessante conservato presso la biblioteca civica di Udine:

“Padova, 17 novembre 1641”

Caro amico

…Ho adempiuto al mio dovere col provvedere ai bisogni del servo di Vossignoria mentre si è portato qui in Padova per attingere acqua della Brenta; ci devo dirvi che assai mi spiace, che colà in Friuli non se ne trovi, essendosi disseccati e fiumi, e fonti, e torrenti, et quello che mi meraviglio di più si è che mai dai primi di Aprile in qua non abbia piovuto. Un simile caso, giusta l’Almanacco Perpetuo è occorso già ducento anni circa, et secondo quello che ivi si legge, ogni ducento anni succede simil caso. Or dunque le botti N. 64 et N. 81 son piene d’acqua, et se te ne occorrerà puoi spedire, che all’uopo del tuo servo provvederò. Gli altri del Friuli si portano più inverso settentrione della Brenta, ma tu fai bene a mandar quivi il tuo servo, poiché è più buona, et poi quello che gli occorre posso favorirlo. Preghiamo il cielo che termini un tal danno, che è di grave discapito. Ti prego a star sano, et mi segno

Tuo affettuoso amico

Conte Nob. Zenobio Grimani

Il 17 novembre 1641 vedeva continuare un’aridità che da aprile non aveva mai regalato un poco di pioggia all’assetato Friuli! E’ chiaro che, pur nella consapevolezza della fondamentale distinzione fra tempo atmosferico e clima, l’esempio sopra riportato ci spinge a riflettere sulla complessità di un sistema naturale per definizione caotico e sulle cautele necessarie nella creazione di scenari climatici e am-
bientali di un futuro più o meno lontano.
Documenti storici e metodologie sofisticate (dalle carote di ghiaccio agli anelli degli alberi, dai sedimenti oceanici ai pollini) ci parlano di condizioni climatiche continuamente mutevoli non solo a scala geologica ma anche a scala storica. Pascoli della Valle d’Aosta minacciati dall’avanzata dei ghiacciai, resti di selciato di strade romane ove oggi v’è il ghiacciaio del Teodulo, il periodo caldo medievale, e gli esempi potrebbero continuare.
Certamente si tratta di argomenti oggetto di ricerche scientifiche sui quali proprio in questi ultimi anni il dibattito fra gli studiosi si è accentuato, come ad esempio l’estensione del glacialismo prima della Piccola Età Glaciale, che tra la fine del 1400 e la fine del 1800 ha portato i ghiacciai alpini (e non solo alpini) alla maggiore espansione storica, oppure le cause esatte di questa espansione.
Di certo non si può non concordare sul fatto che i ghiacciai alpini con le loro rapide reazioni al mutamento dei parametri meteo-climatici, rappresentino le testimonianze più attendibili e più concrete di tale mutamento e che in questa ottica debbano soprattutto venire studiati.
A questo proposito il presente volume, come il convegno del novembre 2007, svolto presso l’Università degli Studi di Milano e voluto dal Comitato Glaciologico Italiano con la collaborazione dell’Associazione dei Consiglieri Regionali della Lombardia e di altri enti, vuole portare un contributo ad una corretta divulgazione di queste tematiche, presentando dati di fatto e ipotesi, misure di fenomeni e considerazioni; il tutto nella convinzione che ciò sia utile per una migliore comprensione della complessità del pianeta che ci ospita e sia uno stimolo per un atteggiamento maggiormente rispettoso per la sua unicità che permette la nostra sopravvivenza.
CLAUDIO SMIRAGLIA & GUGLIELMINA DIOLAIUTI

INTRODUZIONE

Il mondo contemporaneo è agitato da una serie di problemi che la cronaca quotidiana ci pone talora dramaticamente sotto gli occhi: cattiva distribuzione delle risorse con enormi sperequazioni fra i diversi Stati e all’interno degli stessi, conflitti continui e tensioni fra i gruppi umani spesso derivanti dalle disparità economico-sociali, impatto sempre più accentuato sull’ambiente con alterazione e talora distruzione di quelle caratteristiche che permettono la nostra sopravvivenza. Sono problemi strettamente intrecciati e interconnessi, per la cui soluzione scienza e politica, pur su piani diversi, sono chiamate in causa.

Dal punto di vista degli impatti sull’ambiente naturale uno dei temi di maggiore attualità è sicuramente quello dei cambiamenti climatici globali, in cui l’uomo è chiamato pesantemente in causa come imputato principale, e dei loro effetti.

L’effetto più avvertibile e più concreto, e quindi più acquisibile dall’opinione pubblica, di questi cambiamenti in atto è sicuramente la crisi o il “collasso” della criosphera, dell’insieme cioè del ghiaccio terrestre. Dai ghiacciai delle catene montuose che si riducono di spessore e di superficie e si estinguono, alle gigantesche piattaforme dell’Antartide che si frammentano, alla banchisa di ghiaccio marino che si riduce enormemente, al permafrost (il suolo gelato) che fonde sempre più rapidamente, sono numerosi i segnali di un sistema ambientale che sta cambiando marcia, che sta accelerando i propri ritmi evolutivi sotto la spinta di forzanti di diverso tipo.

La corretta divulgazione e la tempestiva comunicazione di questi eventi non sempre sono facili, anche a causa delle incertezze che la scienza non ha ancora completamente superato.

Per dare un contributo a questa divulgazione nel novembre 2007 era stato organizzato presso l’Università degli Studi di Milano un convegno dedicato alla grande tematica delle relazioni fra l’evoluzione del clima e la risposta dei ghiacciai, con particolare attenzione alla realtà della Lombardia. Il successo del convegno, organizzato con la collaborazione del Comitato Glaciologico Italiano, del Comitato EvK2CNR, diA2A (già AEM) e dell’Associazione dei Consiglieri Regionali della Lombardia, suggerì di realizzare gli atti di quell’incontro, che appaiono poco più di un anno dopo grazie alla sensibilità dell’Associazione stessa.

Il convegno era articolato, come il presente volume, in undici relazioni ad opera di alcuni studiosi, sicuramente fra i più noti ed esperti, non solo a livello nazionale, delle relative tematiche. L’obiettivo era quello di fornire un quadro sintetico, ma il più possibile completo delle conoscenze, delle certezze, delle ipotesi e anche delle
incertezze del delicato e ancora non del tutto risolto problema in discussione, fornendo informazioni sulla “salute” dei ghiacciai, sugli impatti a livello abioligico e biologico dei cambiamenti climatici nel sistema ambientale dell’alta montagna, sulle metodologie e sulle tecniche recenti di indagine.

Nel volume si alternano quindi capitoli di carattere generale, volti a fornire un quadro aggiornato dell’argomento trattato, con capitoli più specifici dedicati a temi della realtà lombarda.

Inizia Giuseppe Orombelli tracciando l’evoluzione del clima e delle caratteristiche dell’atmosfera ricavata dall’analisi delle “carote” di ghiaccio estratte dall’Antartide e dalla Groenlandia, dalla quale emerge tra l’altro come mai negli ultimi 800.000 anni si sia registrata una concentrazione di gas serra come l’attuale; seguono Claudio Smiraglia e Guglielmina Diolaiuti, i quali evidenziano la crisi in atto del glacialismo lombardo che negli ultimi dieci anni ha perso il 21% della sua superficie con diminuzioni di spessore medi annui superiori al mezzo metro; Mauro Guglielmin illustra caratteristiche, distribuzione in Lombardia ed evoluzione del permafrost, il ghiaccio nascosto, la cui fusione anche in questa regione sta causando disastri sui versanti montuosi; Dario Bellingeri ed Enrico Zini utilizzando immagini da satellite e confronti con cartografia preesistente presentano le variazioni di superficie e di spessore dei ghiacciai di alcuni gruppi montuosi lombardi, come il Bernina, l’Adamello, il Cevedale, risultate costantemente in riduzione; Nicoletta Cannone con altri collaboratori sottolinea la rapida ed accelerata colonizzazione da parte della vegetazione pioniera delle aree lasciate libere dai ghiacciai negli ultimi decenni, mentre Manuela Pelfini sottolinea l’importanza di discipline tradizionali rivitalizzate e reinvestite, come la dendroglaciologia, nell’offrire contributi essenziali alla comprensione dell’evoluzione dei ghiacciai; Daniele Bocchiola e collaboratori trattano le relazioni fra fiumi e ghiacciai, approfondendo concretamente il tema per il massiccio dell’Adamello e proponendo scenari sull’evoluzione del deflusso in rapporto al cambiamento climatico; Gianni Tartari e collaboratori sottolineano la sensibilità dei laghi prealpini e himalayani ai cambiamenti climatici globali. Valter Maggi presenta il contributo che le “carote” di ghiaccio alpine forniscono nello studio dell’impatto antropico sull’atmosfera, completando quanto offerto dalle aree polari; infine Maurizio Maugeri ed Elisabetta Mazzucchelli chiudono il cerchio affrontando il delicato problema degli effetti antropici sui cambiamenti climatici e fornendo elementi per una maggiore consapevolezza nel distinguere le certezze dalle ipotesi e dalle teorie.

Il quadro complessivo che ne emerge è complesso. Innanzitutto si ha la dimostrazione senza dubbio alcuno dell’attuale intenso depauperamento della criosfera lombarda che sta accelerando negli ultimissimi anni e che sta portando alla riduzione se non all’estinzione di una risorsa fondamentale a livello idrico, energetico
e turistico. In secondo luogo si ha la constatazione della vitalità e vivacità di un settore scientifico per definizione pluridisciplinare che in pochi decenni ha saputo rinnovarsi a livello di tematiche, di metodologie, di tecniche, arrivando a traguardi anche internazionali. Infine ne scaturisce la consapevolezza che a fronte di numerose e indiscutibili certezze su fenomeni direttamente osservabili e misurabili, come il regresso dei ghiacciai, restano molti temi da approfondire sulle cause dirette e indirette di questi fenomeni, che richiedono ulteriori affinamenti metodologici e strumentali. E’ quindi indispensabile che le ricerche e gli approfondimenti possano proseguire ed è auspicabile che questa esigenza venga condivisa e recepita a livello locale e a livello nazionale.
G. OROMBELLI (*)

GIUSEPPE OROMBELLI (*)

GHIACCIAI E CLIMA: 800.000 ANNI DI STORIA DEL CLIMA NELLE “CAROTE” DI GHIACCIO

RIASSUNTO: OROMBELLI G., Ghiacciai e clima: 800.000 anni di storia del clima nelle “carote” di ghiaccio.

Le “carote” estratte dai ghiacci della Groenlandia e dell’Antartide contengono una documentazione continua e dettagliata delle variazioni climatiche e atmosferiche avvenute nel recente passato geologico. Con la perforazione EPICA DC in Antartide è stata ricostruita la storia del clima negli ultimi 800 mila anni. In questo intervallo di tempo la temperatura della Terra è ciclicamente variata, per cause initiali astronomiche, oscillando tra condizioni più fredde (periodi glaciali) e più calde (periodi interglaciali): la temperatura media annua in Antartide, rispetto al valore attuale, è stata fino a 5 °C più calda (negli interglaciali) e fino a 10 °C più fredda (nei periodi glaciali). Intorno a 420 mila anni fa si è prodotto un improvviso aumento dell’ampiezza dei cicli: gli ultimi 5 interglaciali sono stati più caldi dei precedenti. Ad ogni variazione della temperatura si è accompagnata una variazione, nello stesso senso, della concentrazione dei gas che producono l’effetto serra, che hanno quindi svolto un ruolo di amplificazione nei cambiamenti climatici. In condizioni naturali, CO₂ e metano sono oscillati entro valori nettamente inferiori a quelli attuali, causati dall’impetuoso sviluppo industriale ed economico negli ultimi due secoli, ed in particolare nell’ultimo cinquantennio. Le perforazioni nei ghiacci della Groenlandia e dell’Antartide hanno mostrato che, sopra i grandi cicli climatici glaciali-interglaciali della durata media di circa 100 mila anni, si sono sovrapposte variazioni climatiche di più breve durata (numerosi secoli-pochi millenni), molto accentuate nell’emisfero settentrionale, più attenuate in quello meridionale, tra loro accoppiate ma in opposizione di fase (altalena termica bipolare). L’inizio e la fine di queste variazioni si sono prodotti improvvisamente, in tempi molto brevi, anche di soli alcuni anni. Queste variazioni climatiche repentine sono attribuite a cause interne al sistema climatico, quali le variazioni nel circuito e nell’intensità delle correnti oceaniche termoaline, che ridistribuiscono il calore sulla Terra. In conclusione tre sono i principali fatti nuovi documentati dalle carote di ghiaccio: i) le variazioni climatiche maggiori, innescate dalle variazioni dei parametri orbitali terrestri, sono state amplificate e deformate da variazioni interne al sistema climatico (gas serra,
polveri atmosferiche, estensione dei ghiacci, ecc.; ii) i gas serra non hanno mai raggiunto, negli ultimi 800 mila anni, i valori di concentrazione attuali, causati dalle attività umane negli ultimi due secoli; CO₂ e metano hanno superato del 35% e del 130%, rispettivamente, i valori massimi naturali; iii) il sistema climatico terrestre è instabile ed esposto a importanti variazioni, del tutto improvvisi, che si realizzano in pochi anni-decenni.

ABSTRACT: OROMBELLI G., Glaciers and Climate: 800.000 years of climate history in the ice cores.

Ice cores drilled from Greenland and Antarctic ice sheets contain a long and detailed record of past climate and atmosphere changes. The EPICA Dome C ice core (Antarctica) revealed 800 thousand years of climate history, with eight (and half) major glacial-interglacial cycles, driven by periodic changes of orbital parameters. Mean annual temperature over Antarctica was up to 5 °C higher during interglacials, and 10 °C lower during glacial periods, respect to the average of the last one thousand years. Before 420 thousand years ago the interglacials were less warm than in the last five interglacials. Temperature changes were accompanied by green-house gases variations, which played a role in the amplification of climate change. CO₂ and methane oscillated within natural values always well below those presently reached, following the social-economic development since the industrial revolution.

On the major glacial-interglacial cycles>shorter climatic cycles (centuries-few millennia) have been superimposed, more pronounced in the northern hemisphere, subdued and out of phase in the southern hemisphere. The start and the end of these climatic variations were abrupt, occurring in few years-few decades. Changes in the ocean thermoaline circulation are supposed to be the cause of such abrupt climatic shifts. In conclusion ice cores contributed to the climate change science with at least three main achievements: i) the glacial-interglacial climatic cycles modulated by the orbital quasi periodic variations are amplified and deformed by positive feed-back mechanisms (green-house gases, atmospheric dust, ice/snow extent, etc.); ii) CO₂, CH₄ and N₂O in the last 800 thousand yeas never attained the present values and never were subject to a such rapid increase (CO₂ + 35 %, CH₄ + 130% in two centuries); iii) the climate system is unstable and subject to large sudden variations, occurring in just few years or decades.
GHIACCIAI E CLIMA

Ghiacciai e clima formano un binomio strettamente connesso. Da quando iniziò lo studio scientifico dei ghiacciai apparve chiara la loro dipendenza dal clima e, contemporaneamente, fu evidente il loro valore di segnalatori di variazioni climatiche. Più in generale oggi si è consapevoli che tra il sistema climatico e la c riosfera intercorrono rapporti attivi nei due sensi: il sistema climatico determina le dimensioni ed i caratteri della c riosfera, ma questa è una delle componenti che concorrono a determinare il clima terrestre e le sue variazioni. Esistono, così, numerosi meccanismi di retroazione (feed back) tra i due, tra i quali l’anello di retroazione “clima-ghiaccio/neve-albedo-clima” è un potente amplificatore delle variazioni climatiche a scala regionale e globale, al quale si attribuisce, nella situazione attuale di cambiamento climatico, importanza comparabile a quella dell’aumento dei gas serra.

Vi è tuttavia un’altra connessione tra i ghiacciai e il clima, che è stata messa in evidenza negli ultimi decenni: i ghiacciai polari contengono una delle migliori documentazioni della storia del clima e dell’atmosfera nel recente passato geologico.

Nei ghiacciai polari (e nelle porzioni fredde, più elevate, dei ghiacciai montani), non soggetti a fenomeni di fusione, la neve che si deposita anno dopo anno, conserva molti degli originali segnali chimici e fisici acquisiti dalle condizioni e dai caratteri delle massa d’aria in cui si è cristallizzata e dell’ambiente in cui si è deposta e trasformata in nevato. La trasformazione delle neve in nevato e in ghiaccio avviene molto lentamente, senza fusione, con riduzione dei pori e aumento delle dimensioni dei cristalli, e costituisce un meccanismo naturale di sequestro di campioni d’aria sotto forma di bolle gassose occluse. In altre parole i ghiacciai polari conservano diretta memoria delle condizioni atmosferiche, climatiche e ambientali del passato.

Pertanto dai campioni estratti con perforazioni a carotaggio continuo nei ghiacciai polari e in taluni ghiacciai montani, si possono estrarre dati, in successione teoricamente continua, sulle variazioni delle condizioni climatiche e atmosferiche del passato, incluse le variazioni della concentrazione di alcuni dei gas serra. Mentre nei ghiacciai di montagna, per l’elevato accumulo annuo e i ridotti spessori, si possono analizzare soltanto gli ultimi decenni o secoli, fino a numerosi millenni nel caso di ghiacciai andini o dell’Asia centrale, i migliori risultati si sono ottenuti con le perforazioni condotte nelle aree centrali delle calotte glaciali (ice sheets) groenlandese e antartiche, ove si hanno spessori di alcune migliaia di metri, basso accumulo annuo, continuità di deposizione nevosa, stratigrafia indisturbata e giacitura orizzontale degli originali depositi nevosi.
Dopo alcune perforazioni nei primi anni ‘60 (tra cui anche una italiana di alcune centinaia di metri in Antartide, presso l’allora esistente stazione belga Roi Baudouin), le prime importanti perforazioni profonde furono eseguite nel 1966 a Camp Century (nella Groenlandia settentrionale a 77° Lat. N, profondità raggiunta 1387 m) e nel 1968 presso la Stazione Byrd (nell’Antartide occidentale a 80° lat. S, profondità raggiunta 2163 m). Negli anni successivi sono state ultimate altre perforazioni in Groenlandia (1981, Dye 3, lat. 65° N, profondità 3037 m; 1992, GRIP, lat. 72° N, profondità 3029 m; 1993, GISP2, lat. 72° N, profondità 3053 m; 2003, NGRIP, lat. 75° N, profondità 3085 m) ed in Antartide (1978, Dome C, lat. 74° S, profondità 905 m; 1998, Vostok, lat. 78° S, profondità 3623 m; 2003, EPICA DC, lat. 75° S, profondità 3260 m; 2006, Dome Fuji, lat. 77° S, profondità 3029; 2006, EPICA DML, lat. 75° S, profondità 2774 m; 2007, Talos Dome, lat. 73° S, profondità 1620 m). La documentazione climatica più lunga finora raccolta in Antartide è quella di EPICA DC (ultimi 800 mila anni), seguita da quelle di Vostok (420 mila anni) e di Dome Fuji (340 mila anni), mentre in Groenlandia NGRIP ha raggiunto 120 mila anni dal presente, GRIP e GISP2 90 mila anni.

FIG. 1 - Il campo di perforazione EPICA in Antartide presso la Stazione Concordia, ove è stata estratta una carota di ghiaccio lunga 3260 m, che documenta la storia del clima terrestre negli ultimi 800 mila anni (Fototeca PNRA).
L’accumulo annuo più elevato in Groenlandia, malgrado spessori di ghiaccio ana-
loghi, non consente di arretrare nel tempo quanto è invece possibile in Antartide,
ove l’accumulo annuo è molto più ridotto. Così in Antartide la carota di EPICA DC
ha attraversato tutto l’Olocene, il Pleistocene superiore e medio ed è entrata nella
parte terminale del Pleistocene inferiore, mentre in Groenlandia non si è superato
il Pleistocene superiore, ottenendo tuttavia informazioni con una risoluzione tem-
porale più elevata.

QUALI INFORMAZIONI DANNO LE CAROTE DI GHIACCIO ?

Dalle carote di ghiaccio estratte si possono ottenere numerose informazioni pa-
leoclimatiche, paleoatmosferiche e paleoambientali. Riassumendo e semplificando,
dalla composizione isotopica del ghiaccio si risale alla temperatura dell’aria in cui
la neve si è formata o più in generale alla temperatura media annua sul sito in cui
è stata fatta la perforazione, mentre dallo spessore degli strati annui, identificati
con metodi fisici e chimici, si risale all’accumulo annuo di neve. Le precipitazioni
sono anche valutate con altri metodi indiretti. Dal confronto tra il rapporto isotopico
dell’Ossigeno e quello dell’Idrogeno si risale alle caratteristiche delle superfici ocea-
niche (temperatura superficiale), da cui proviene l’umidità, poi condensatasi a for-
mare le precipitazioni nevose. Tutta una serie di analisi chimiche, anche in continuo,
consente di ottenere informazioni sul carico chimico presente in atmosfera nel pas-
sato, incluso quello dovuto alle eruzioni vulcaniche esplosive. Dalle polveri insolu-
bili contenute nel ghiaccio si risale alla concentrazione del pulviscolo sospeso in
atmosfera, alla sua provenienza, alle caratteristiche delle aree aride continentali da
cui le polveri sono state sollevate. Nelle carote di ghiaccio sono pure conservati li-
velli di ceneri vulcaniche e, recentemente, sono state identificate anche polveri di
origine cosmica (Narcisi & alii, 2007). Dai gas estratti dal ghiaccio si ricava diret-
tamente la concentrazione di alcuni gas serra quali CO₂, CH₄, N₂O. Utilizzando
queste ed altre informazioni si possono ricostruire le traiettorie delle perturbazioni,
la conformazione della circolazione atmosferica, l’estensione dei ghiacci marini, le
variazioni di quota della superficie della calotta glaciale, ecc.
FIG. 2 - EPICA Dome C: una carota di ghiaccio analizzata con un apparecchio che misura direttamente in situ la conducibilità elettrica in solido, per la individuazione della stratigrafia nel ghiaccio e per la ricostruzione della storia del clima e dell’atmosfera negli ultimi 800 mila anni.

La datazione dei livelli di ghiaccio può essere fatta direttamente per conteggio degli strati annui, se l’accumulo di neve è sufficientemente elevato da consentire il riconoscimento dei segnali chimici o fisici stagionali (Steffensen & alii, 2008). Nelle regioni polari il contrasto stagionale è molto accentuato e si riflette in caratteri atmosferici molto diversi che lasciano la loro impronta nelle precipitazioni nevose.

In Groenlandia gli accumuli annui sono ben riconoscibili e sono stati conteggiati indietro nel tempo fino ad oltre 40 mila anni dal presente. In Antartide i segnali stagionali sono conservati solo nelle regioni più esterne, con maggiore accumulo. Nelle regioni interne della calotta, l’accumulo annuo è ridotto a pochi centimetri ed il segnale annuo diviene presto non rintracciabile. In questi casi ci si appoggia su livelli marker, quali eruzioni vulcaniche avvenute in età nota ed il cui segnale sia identificabile, sulla correlazione tra le curve isotopiche nel ghiaccio e quelle ottenute dai sedimenti marini, sulla formulazione di una relazione età/profondità, basata sulle leggi di flusso dei ghiacciai, tenendo conto della variabilità nel tempo di parametri importanti come la temperatura e le precipitazioni (Parrenin & alii, 2007).
LA VARIABILITÀ CLIMATICA: I CICLI GLACIALI/INTERGLACIALI

La curva che esprime la variazione isotopica dell'idrogeno nel ghiaccio della carota di EPICA DC mette in luce chiaramente 8 cicli climatici maggiori e mezzo (dallo Stadio Isotopico Marino 20 al presente), succedutisi negli ultimi 800 mila anni (Jouzel & alii, 2007). Ogni ciclo, della durata media di 100 mila anni circa, consiste in un lungo periodo freddo glaciale e in un più breve periodo caldo interglaciale. Negli ultimi 4 cicli e mezzo, a partire dal presente, si stima che la temperatura media annua sopra l’Antartide sia variata, rispetto alla media degli ultimi 1000 anni, da +5 °C negli interglaciali più caldi, a -10 °C nelle fasi più fredde dei periodi glaciali, con una banda di escursione ampia 15 °C. I cicli sono stati fortemente asimmetrici, con periodi interglaciali (con temperatura uguale o superiore a quella dell’attuale, l’Olocene) in genere di breve durata, da poche migliaia di anni a circa 20 mila anni, e periodi glaciali più lunghi, da 60 a 90 mila anni circa. La transizione da un interglaciale al successivo glaciale è stata graduale, con numerose oscillazioni, fino a culminare nella punta più fredda. La transizione dal massimo glaciale al successivo interglaciale (detta “terminazione”) è stata invece assai rapida, realizzandosi in meno di 10 mila anni. L’attuale interglaciale, l’Olocene, iniziato circa 11.500 anni fa, risulta meno caldo dei 4 interglaciali precedenti.

Nei 4 cicli climatici più antichi, riconosciuti nella carota di EPICA DC, tra 420 e 800 mila anni, l’escursione della temperatura media annua sopra l’Antartide è stata più ridotta, circa 10 °C, con periodi glaciali ugualmente freddi o di poco più degli ultimi quattro, ma con periodi interglaciali meno caldi, anche rispetto all’Olocene. Nel complesso, in questo intervallo di tempo, l’asimmetria dei cicli appare ridotta. Intorno a 420-430 mila anni fa si è quindi prodotto un cambiamento nella struttura delle variazioni climatiche, con un aumento di ampiezza nei cicli climatici: tale cambiamento, essendosi verificato circa a metà dell’epoca con polarità magnetica normale Bruhnes, viene indicato come “evento medio-Bruhnes” (EPICA community members, 2004). Per riassumere, il confronto tra le condizioni prima e dopo tale evento mostra che tra 800 e 420 mila anni fa sono prevalse condizioni climatiche intermedie, mentre da 420 mila anni fa al presente hanno avuto durata relativa maggiore le condizioni climatiche estreme.
Fig. 3 - EPICA Dome C: ottocento mila anni di storia del clima. Compilazione delle principali curve paleoclimatiche ottenute, a cura di Barbara Delmonte.
Dall’alto in basso:
1 e 2 - Curva della variazione della composizione isotopica dell’Idrogeno nel ghiaccio, confrontata con la sottostante curva isotopica composita marina dell’Ossigeno (foraminiferi bentonici). Sono evidenti 9 picchi interglaciali (stadi isotopici con numeri dispari) e 8 glaciazioni (stadi isotopici con numeri pari). Rispetto al valore medio negli ultimi mille anni, fatto uguale a 0, la temperatura media annua sopra l’Antartide si calcola sia oscillata tra +5 °C (ultimo interglaciale) e -10°C (ultima glaciazione). I primi 4 interglaciali, tra 800 mila e 430 mila anni dal presente, sono stati meno caldi e di maggiore durata di quelli successivi. A partire da 430 mila anni dal presente (Evento medio-Bruhnes) l’ampiezza dei cicli climatici maggiori è improvvisamente aumentata. (da Jouzel et al. 2007)
3 e 4 - Curve della concentrazione atmosferica del metano e della CO₂. Si noti la sostanziale concordanza, nei lineamenti maggiori, tra le due curve e tra queste e quelle isotopiche, ad indicare che le tre grandezze sono tra loro strettamente connesse e covarianti. Nell’intervallo di tempo analizzato, il metano è variato tra 350 e 800 ppbv circa. Dalla rivoluzione industriale il metano è passato da poco più di 700 ppbv a 1780 ppbv, con un aumento del 130%. L’anidride carbonica è oscillata tra circa 170 e 300 ppmv: dalla rivoluzione industriale è aumentata da 280 a 384 ppmv con un incremento del 37% in circa due secoli. (da Lüthi et al., 2008 e da Loulergue et al. 2008)
5 - Curva della concentrazione delle polveri atmosferiche (scala logaritmica rovesciata). Nelle fasi glaciali la concentrazione delle polveri è di due-tre ordini di grandezza superiore a quella delle fasi interglaciali (da Lambert et al., 2008). Come i due gas serra anche le polveri atmosferiche esercitano una retroazione positiva sul clima, amplificando gli effetti di iniziali cause innescenti. Si noti come a 430 mila anni dal presente tutte le curve mostrino un aumento dell’ampiezza dei segnali, rispetto ai 300 mila anni più antichi.
Come era già stato osservato nelle curve isotopiche ottenute dai Foraminiferi contenuti nelle carote di sedimenti oceanici, anche le curve isotopiche delle carote di ghiaccio hanno rivelato la presenza di tre principali periodicità sovrapposte, coincidenti con le ben note periodicità nelle variazioni dei tre parametri dell’orbita terrestre (eccentricità, inclinazione dell’asse di rotazione, precessione degli equinozi) individuate da Milankovitch come possibile causa delle glaciazioni (Jouzel & alii, 2007). Gli studi della carote di ghiaccio hanno pertanto rafforzato l’ipotesi che i cicli climatici glaciali/interglaciali siano stati innescati dalle variazioni nella distribuzione stagionale e latitudinale della radiazione solare sulla Terra, causata dalle variazioni dei parametri orbitali, ma hanno pure mostrato che il segnale astronomico viene amplificato e deformato da cause interne al sistema climatico, attraverso meccanismi di feed back, legati ai gas serra, alle polveri atmosferiche, all’estensione dei ghiacci marini, ecc. Un apporto originale degli studi sulle carote di ghiaccio è stato infatti la misura diretta della variazione nel passato della concentrazione di gas serra, delle polveri e del carico chimico atmosferico, nonché di numerosi altri aspetti significativi per la comprensione delle variazioni atmosferiche, climatiche e ambientali.

LA VARIABILITÀ CLIMATICA ALLA SCALA DEL MILLENNIO

Le curve isotopiche ottenute dalle carote di ghiaccio estratte dalla Groenlandia che, come si è detto, si spingono indietro nel tempo non più di circa 120 mila anni ma offrono una risoluzione temporale molto più elevata, hanno mostrato che, sovrapposte ai cicli climatici milankoviani, si sono prodotte variazioni climatiche a più elevata frequenza, con una durata dell’ordine di un millennio ed una ampiezza comportante una escursione della Tma fino a 10-15 °C, solo di poco inferiore a quella dei cicli glaciali/interglaciali. Queste variazioni si osservano durante l’ultima glaciazione e sono caratterizzate da fasi di transizione del tutto improvvisate e rapide, della durata di pochi anni/pochi decenni e sono state spesso indicate come variazioni rapide o abrupte (North Greenland Ice Core Project members, 2004; Steffensen & alii, 2008). In generale si osserva una rapida transizione dalle fasi fredde a quelle calde ed una più graduale discesa dai massimi termici ai minimi. La durata del picco caldo è più breve della fase fredda. Si è quindi riconosciuto che piccoli caldi e fasi più fredde corrispondono concettualmente agli Interstadi e agli Stadi dell’ultima glaciazione e sono state documentate o proposte correlazioni con la stratigrafia dei depositi continentali del Nord Europa. Nella carota di ghiaccio NGRIP, tra 120 e 10 mila anni fa circa (Stadi Isotopici Marini 4,3 e 2) in Groenlandia si sono succeduti 25 interstadi e 26 stadi.
Anche nelle carote di ghiaccio antartiche analizzate con maggiore dettaglio (EPICA DC, EPICA DML) si sono osservate variazioni climatiche analoghe, ma molto più smussate e attenuate, con escursioni comportanti variazioni della Tma di pochi °C. La correlazione interemisferica tra le carote di ghiaccio antartiche e quelle grenlandesi, consentita dal segnale isocrono su tutto il globo della concentrazione del gas metano, ha rivelato che le variazioni alla scala del millennio sono accoppiate, ma non in fase, nei due emisferi: l’Antartide anticipa la Groenlandia di un migliaio di anni, quasi che, quando la prima si raffredda la seconda si riscaldà e viceversa. È stato anche notato che quanto più lunga è la durata dello stadio freddo al Nord, tanto maggiore è l’escursione termica della corrispondente fase calda al Sud (EPICA community members, 2006). Questa contrapposizione tra le due regioni polari è stata chiamata “altalena termica bipolare” ed attribuita al trasporto di calore operato dal sistema globale delle correnti termocline, in cui un ruolo importante ha la circolazione atlantica profonda (Meridional Overturning Circulation).

Recenti analisi sulla carota NGRIP (Steffensen & alii, 2008), in cui è possibile il conteggio degli accumuli annui, hanno mostrato che talune variazioni improvvisi nel segnale “eccesso di deuterio”, ritenuto indicativo delle caratteristiche delle superfici oceaniche da cui proviene l’umidità poi condensata e precipitata in forma di neve sulla Groenlandia, si sono prodotte in meno di due anni (inizio interstadio Bölling, transizione Younger Dryas/Holocene), precedute di una decina d’anni da variazioni nel segnale delle polveri, e seguite da quello delle temperature. La successione degli eventi consente di ipotizzare un improvviso cambiamento nella circolazione atmosferica nell’emisfero Nord, in risposta ad un progressivo riscaldamento dell’emisfero meridionale e ad una espansione a Nord della Zona di Convergenza Intertropicale.

LA VARIABILITÀ ALLA SCALA DEI SECOLI/DECENNI

Per quanto concerne l’Olocene (ultimi 11,700 anni) nel segnale isotopico in Groenlandia è stato riconosciuto un evidente picco freddo, breve ed acuto, a 8200 anni dal presente (Thomas & alii, 2007). Per il resto sono state evidenziate minori variazioni nei segnali chimici e delle polveri, forse indicative del persistere, sotto traccia, della variabilità alla scala dei millenni (Masson & alii, 2000; Mayewski & alii, 2004). La variabilità alla scala dei secoli o dei decenni è stata spesso descritta (Delmonte & alii, 2005) o appare evidente da talune elaborazioni dei dati (Johnsen & alii, 2001) ma, per la sue debole ampiezza, risulta spesso oscurata dal rumore del segnale.
I GAS SERRA

Il processo di firnificazione nei ghiacciai polari intrappola una parte dell’aria contenuta nella neve e nel nevato, sotto forma di bolle d’aria occluse nel ghiaccio o, a maggiore profondità, come gas idrati. E’ pertanto possibile estrarre l’aria contenuta nel ghiaccio e misurare in essa la concentrazione di alcuni dei gas serra, quali CO₂, CH₄, N₂O. A causa delle maggiori impurezze presenti nei ghiacci della Groenlandia, le misure di CO₂ risultano affidabili unicamente nei ghiacci antartici, mentre quelle del metano risultano affidabili nel ghiaccio di entrambe le regioni polari.

A causa della permeabilità nel manto nevoso e nel nevato su notevoli spessori, anche di alcune centinaia di metri, i gas non hanno la stessa età del ghiaccio incassante, ma risultano più giovani di numerosi secoli fino ad oltre un millennio, e questo divario di età deve essere calcolato e se ne deve tener conto adeguatamente.

Come è ampiamente noto dalle misure effettuate sulle carote di ghiaccio di Vostok (Petit & alii, 1999), i gas serra CO₂ e CH₄, negli ultimi 420 mila anni sono variati sostanzialmente all’unisono con le variazioni della composizione isotopica, vale a dire che ogni aumento/diminuzione della temperatura è accompagnato da un analogo aumento/diminuzione della concentrazione dei due gas serra, indicando che le concentrazioni dei gas serra e la temperatura sono grandezze covarianti, tra loro in qualche modo connesse.

In realtà, analisi più dettagliate successive (Monnin & alii, 2001) hanno mostrato che le variazioni di temperatura in Antartide precedono di un migliaio di anni le variazioni di CO₂ e metano. Sempre nel dettaglio, mentre le variazioni di CO₂ replicano fedelmente quelle della temperatura, le variazioni del metano alla scala del millennio si differenziano da quelle delle temperature in Antartide, per seguire quelle della temperatura nell'emisfero Nord che, come si è visto, sono quasi in opposizione di fase. Se ne deduce che le variazioni di CO₂ dipendono dal sistema climatico antartico (molto probabilmente dalle condizioni del grande Oceano Meridionale, temperatura e copertura di ghiacci marini), mentre quelle del metano dipendono dalle condizioni ambientali dell’emisfero settentrionale (molto probabilmente dalla estensione delle aree umide presenti sulle grandi superfici continentali). Le variazioni dei due gas serra sono quindi innescate da iniziali variazioni climatiche e ambientali, ma a loro volta sono causa della successiva amplificazione delle medesime. L’estensione della documentazione sulle variazioni dei gas serra agli ultimi 800 mila anni (Lüthi & alii, 2008; Loulergue & alii, 2008) ha mostrato che, in questo lungo intervallo di tempo, CO₂ e CH₄ sono variati entro un banda di valori compresi rispettivamente tra 170 e 300 ppm e tra 350 e 800 ppb. E’ noto che in soli due secoli questi due gas, a causa delle attività umane sviluppatesi con la rivoluzione industriale, sono aumentati rapidamente (in particolare nell’ultimo cin-
quantennio), uscendo dalla fascia di variabilità naturale, sino a raggiungere i valori di 384 ppm (+ 35%) e di 1780 ppb (+ 130%), rispettivamente. In tal modo le carote di ghiaccio hanno documentato l’avvenuta (e tutt’ora in corso) modificazione della composizione chimica e del bilancio radiativo dell’atmosfera terrestre.

OSSERVAZIONI CONCLUSIVE

Lo studio delle carote di ghiaccio estratte dalle calotte glaciali polari della Groenlandia e dell’Antartide ha portato conoscenze innovative sulle variazioni climatiche nel recente passato geologico (Quaternario), utili per la comprensione del funzionamento del sistema climatico terrestre. Lo stato attuale delle conoscenze in questo campo può essere così schematicamente sintetizzato.

I cicli climatici maggiori (glaciali/interglaciali) sono innescati dalle variazioni dei parametri orbitali della Terra, che regolano la distribuzione stagionale e latitudinale del calore solare sulla Terra. Negli ultimi 800 mila anni è prevalse il controllo della variazione dall’eccentricità dell’orbita terrestre (periodo ~ 100 mila anni). Intorno a 430 mila anni fa si è prodotto un cambio di ampiezza: gli interglaciali precedenti agli ultimi 4 sono stati meno caldi, ma hanno avuto maggiore durata. Nell’ultimo ciclo glaciale-interglaciale l’ampiezza della variazione termica è stata maggiore in Groenlandia (20-25°C), rispetto all’Antartide (~ 15 °C), a confermare la spiccata asimmetria climatica tra i due emisferi. Alle variazioni della temperatura risultano associate variazioni della concentrazione dei gas serra, del particolato atmosferico (Lambert & alii, 2008), della estensione dei ghiacci continentali e marini (Wolff & alii, 2006), fattori tutti che tendono ad amplificare le variazioni della temperatura mediante meccanismi di feedback positivo.

Le carote di ghiaccio hanno inoltre rivelato l’esistenza di variazioni climatiche alla scala del millennio, che iniziano e terminano bruscamente in pochi anni/decine di anni. Il clima terrestre è quindi capace di sorprese: è un sistema non lineare, che può reagire rapidamente e con effetti non proporzionati a cause forzanti assai deboli. Le variazioni alla scala del millennio sono accoppiate nelle regioni polari dei due emisferi, ma sfasate (~ in opposizione di fase: altalena termica bipolare). L’ampiezza delle variazioni è molto maggiore nell’emisfero Nord rispetto a quello Sud. La causa di queste variazioni è vista in improvvise alterazioni del circuito delle correnti marine termoaline che ridistribuiscono il calore sulla Terra. L’attuale interglaciale (Olocene) differisce dai tre precedenti, mentre mostra qualche analogia con l’interglaciale MIS 11.

Per quanto riguarda i gas ad effetto serra, le concentrazioni di CO₂ e CH₄ durante i cicli glaciali/interglaciali sono oscillate entro una banda definita (170-300
ppmv e 400-800 ppbv, rispettivamente) e risultano circa proporzionali alla temperatura. I valori attuali della concentrazione di CO₂ (384 ppmv) e di CH₄ (1780 ppbv) non sono mai stati raggiunti nei precedenti 800 mila anni, né mai si è prodotto un aumento così rapido come quello prodottosi negli ultimi 2 secoli (~100 ppm e ~1000 ppb, rispettivamente). Le variazioni di CO₂ sono probabilmente condizionate dall’Oceano Meridionale, quelle del metano dall’estensione delle aree umide dell’emisfero nord.

Sono in programma altre perforazioni profonde in Antartide, che sfruttando gli elevati spessori della calotta Est-antartica e il bassissimo accumulo medio annuo di neve, dovrebbero consentire di ottenere carote di ghiaccio che coprono l’ultimo milione e mezzo di anni della storia climatica della Terra. In Groenlandia l’obiettivo è di ottenere una registrazione dettagliata della fine della penultima glaciazione e dell’intero penultimo interglaciale (Eemiano), nel quale la temperatura media globale è stata di qualche grado più elevata di quella media degli ultimi mille anni, ed il livello degli oceani di circa 4 m più elevato, condizioni che potrebbero di nuovo replicarsi sulla Terra se il cambiamento climatico in atto (e le cause che lo producono) non dovessero attenuarsi, ma proseguire anche nei prossimi decenni e secoli.

BIBLIOGRAFIA

CLAUDIO SMIRAGLIA (*) & GUGLIELMINA DIOLAIUTI (*)

LO STATO DI SALUTE DEI GHIACCIAI LOMBARDI: VERSO L’ESTINZIONE DI UNA RISORSA FONDAMENTALE?

RIASSUNTO: CLAUDIO SMIRAGLIA & GUGLIELMINA DIOLAIUTI, Lo stato di salute dei ghiacciai lombardi: verso l’estinzione di una risorsa fondamentale?

Questo contributo presenta l’evoluzione recente dei ghiacciai lombardi esaminando le variazioni di superficie e di volume di un campione rappresentativo (249 ghiacciai), ricavate da tre serie di dati: 1999 e 2003 da ortofoto e rilievi GPS, 1991 da un preesistente catasto. La superficie glaciale totale appare in netta riduzione: è passata infatti da 117.4 km² del 1991 a 92.4 km² del 2003 (-21%). A questa perdita di superficie hanno contribuito massicciamente i ghiacciai di minori dimensioni. Il tasso di riduzione è accelerato in modo sensibile fra i due periodi considerati, passando da c. 1.8 km²/anno fra il 1991 e il 1999 a c. 3.1 km²/anno fra il 1999 e il 2003. La riduzione di volume sull’intero periodo è stata di c. 0.766 km³ di ghiaccio, pari a un volume di acqua di c. 0.697 km³; la variazione media di spessore è stata di -6.84 m (-0.6 m/anno). Questa intensa riduzione coincide con un incremento della temperatura registrato presso stazioni locali di c.+0.5°C e con un decremento dello spessore nivale (circa -11.4%), fenomeni collegabili con variazioni dell’indice della North Atlantic Oscillation (NAO).

ABSTRACT: CLAUDIO SMIRAGLIA & GUGLIELMINA DIOLAIUTI, The actual condition of Lombardy glaciers: a fundamental water resource going to be vanished?

This paper is aimed at describing the recent evolution of Lombardy glaciers by analysing surface and volume area changes in a representative subset of data (249 glaciers). Three surface area records, for the years 1991, 1999 and 2003, were avai-
lable for the Lombardy glaciers. Both the 1999 and 2003 surface area data were analyzed by the authors by combining glacier limits manually digitized on registered colour orthophotos and differential GPS (DGPS) surveys of glaciers. The analysis led to a quantification of surface reduction: from 117.4 km2 in 1991 to 92.4 km2 in 2003 (c. -21%). Small glaciers proved to contribute strongly to total area loss. The area change rate accelerated in the later period, with surface reduction between 1999 and 2003 equal to a mean area loss of c. 3.1 km2/y; the mean yearly loss over the previous period (1992-1999) was found equal to 1.6 km2/y. The volume reduction between 1991 and 2003 was of c. 0.766 km3 of ice, equal to a water volume of c. 0.697 km3. The thickness mean variation in the same period was of -6.84 m (-0.57 m/year). This impressive acceleration coincided with a local warming (c.+0.5°C) and a local decrease in snow cover depth, tentatively connected to the North Atlantic Oscillation (NAO) index.
INTRODUZIONE

Da alcuni decenni è in corso un intenso regresso dei ghiacciai in tutto il mondo dall’area alpina (Haeberli & Beniston, 1998) all’Antartide (Rott & alii. 1996; Cook & alii, 2005), che viene considerato il segnale più chiaro e indiscutibile del riscaldamento globale (Oerlemans 2005; IPCC, 2007) (fig. 1). Sulle Alpi l’incremento termico nell’ultimo secolo è risultato essere oltre il doppio rispetto ad altre regioni (Böhm & alii, 2001), con un’accelerazione a partire dalla fine degli anni ’70 del secolo scorso. Questa evoluzione climatica sta portando ad una vera e propria “disintegrazione” delle masse glaciali alpine, interessando in particolare i ghiacciai di piccole dimensioni (cioè i ghiacciai con superficie inferiore a 1 km²), che sulle Alpi rappresentano l’80% del numero totale dei ghiacciai e costituiscono un importante contributo alle risorse idriche (Oerlemans & Fortuin 1992).

Fig. 1 - Ghiacciai Dosdè (gruppo Piazzi-Campo, Valtellina): a) (sopra) estate 1932 Archivio CGI;b) (sotto) estate 2007, foto G. Diolaiuti.
Per cogliere questa evoluzione sono necessari dati sia a livello dei singoli apparecchi glaciali (misure di variazioni frontali e di bilanci di massa), sia soprattutto a livello di interi settori delle Alpi. Ci si riferisce in questo secondo caso ai catasti che permettono con diverse metodologie di raccogliere dati quantitativi sull’intero cam- pione dei ghiacciai esistenti (ad esempio l’area) e di prospettare scenari sull’evoluzione futura a scala regionale (Zemp & alii, 2006). È chiaro che diversi catasti ripetuti nel tempo rendono possibile predisporre un quadro generale dell’evoluzione in atto in una determinata regione nei decenni precedenti e che i catasti dovrebbero essere ripetuti ad intervalli temporali compatibili con le caratteristiche dinamiche e i tempi di risposta dei ghiacciai non polari (pochi decenni o ancora meno).

Con questo lavoro si vuole portare un contributo alla conoscenza dell’evoluzione recente del glacialismo della Lombardia, un’importante subregione glacializzata (Santilli & alii., 2002) che può veramente considerarsi rappresentativa di tutto il glacialismo italiano. Le Alpi Lombarde infatti non solo comprendono i due più vasti ghiacciai italiani (quello dell’Adamello con circa 18 km² di superficie e quello dei Forni con circa 12 km²), ma raccolgono anche un numero elevato di ghiacciai piccoli e di medie dimensioni con un’ampia casistica di esposizioni, morfologie, altitudini e inclinazioni (Fig. 2).

FIG. 2 - Distribuzione del glacialismo lombardo in sei gruppi montuosi principali.
In questa regione sin dalla prima metà del XX secolo sono numerosi gli studiosi (fra gli altri Giuseppe Nangeroni e Ardito Desio) che si dedicarono allo studio del glacialismo lombardo. Sono rilievi e ricerche sviluppate nell’ambito del Comitato Glaciologico Italiano, cui si unirà negli anni ottanta il Servizio Glaciologico Lombardo (Smiraglia, 1992; Galluccio & Scotti, 2008).

In questi ultimi decenni i ghiacciai della Lombardia sono stati oggetto di studi da parte di numerose strutture che con metodi diversi hanno messo in evidenza la loro evoluzione; oltre al Comitato Glaciologico Italiano e al Servizio Glaciologico Lombardo, vanno ricordati l’Università di Milano (Dipartimento di Scienze della Terra), il Politecnico di Milano, l’Università di Brescia, l’ARPA-Lombardia, la FLA, il CESI., il CNR Tematiche recenti sono state l’utilizzo turistico dei ghiacciai lombardi e l’evoluzione delle risorse idriche da loro rappresentate.

METODOLOGIE

Sui ghiacciai lombardi sono state utilizzate tecniche di rilievo di vario tipo. Fra le più antiche le misure di variazione frontale (a partire dal 1895) che forniscono oggi curve cumulate anche ultrasecolari (quelle dei Forni o del Ventina ad esempio), dalle quali è possibile ricavare l’entità degli arretramenti e degli avanzamenti delle fronti. Oltre a questo tipo di misura, realizzata su un campione di qualche decina di ghiacciai, nel 1987 sono iniziati anche i bilanci di massa, cioè le misure di variazione di volume di spessore da un anno all’altro. Recentemente sia per lo studio di singoli gruppi montuosi sia per la quantificazione dell’entità dell’intero glacialismo regionale si sono utilizzate elaborazioni sia di ortofoto sia di immagini da satellite, unite a rilievi di terreno con metodi satellitari. In questo contributo verranno riportati i risultati di recenti studi sulle variazioni areali e volumetriche dal 1991 al 2003 (Citterio & alii, 2007).

Sia i dati 1999 che quelli 2003 sono stati rilevati direttamente dagli autori del presente contributo da ortofoto a colori, presenti come layer nel SIT Regione Lombardia ed acquisite nel periodo tardo estivo, Volo Terra Italy 98 - 99 (nel testo e nelle tabelle i dati e i confronti sono per uniformità riferiti al solo 1999, rilievo a cui si riferisce la maggior parte dei dati elaborati) e 2003 ed integrati con dati rilevati sul terreno con tecnica GPS differenziale (DGPS) in modalità fast-statica rispetto a basi master locali (per maggiori dettagli sulla metodologia di lavoro seguita si faccia riferimento a Diolaiuti & alii, 2006). Le ortofoto impiegate per la ricerca hanno
costituito il livello di riferimento di un Sistema Geografico Informativo (GIS) allestito per delimitare manualmente i limiti glaciali ed archiviare in un database relazionale i caratteri morfometrici rilevati (area, perimetro, lunghezza, larghezza e dislivello altimetrico degli apparati). Le ortofoto utilizzate sono prodotti commerciali restituiti dalla Compagnia Generale Riprese Aeree – CGR- con risoluzione planimetrica di un pixel avente lato di 1 m per le immagini 1999 e 0,5 m per le immagini 2003. L’accuratezza delle immagini garantita dal produttore è pari a ± 2 m per le immagini 1999 e ± 1 m per quelle 2003. L’integrazione tra dati telerilevati (da ortofoto) e dati di terreno (da rilievi DGPS) si è resa necessaria per ottimizzare le informazioni morfometriche relative al 1999; diversamente le ortofoto 2003 sono risultate di eccezionale qualità e nitidezza grazie anche alle particolari condizioni meteorologiche dominanti l’estate 2003 (quasi totale assenza di neve anche nei settori superiori degli apparati glaciali) e non hanno richiesto verifiche di terreno dei limiti glaciali.

L’accuratezza planimetrica dei limiti rilevati tramite DGPS è quantificabile in ± 1 m. La precisione planimetrica complessiva delle aree calcolate è stata valutata in accordo a quanto suggerito da Vögtle & Schilling (1999): si sono considerate a questo scopo sia le fonti di incertezza derivanti dai dati sorgente (per i dati 1999: accuratezza delle ortofoto e/o dei rilievi DGPS; per i dati 2003: esclusivamente accuratezza delle ortofoto) che quelle conseguenti alla nitidezza dei limiti glaciali. La precisione areale di ciascuna area glaciale delimitata (sia per i dati 1999 che per quelli 2003) è stata quindi quantificata sulla base dei buffer areali ottenuti dal prodotto tra il perimetro del ghiacciaio stesso e la sua incertezza planimetrica (conseguenza sia dei dati sorgente che della nitidezza del limite). Il valore finale di precisione areale dell’intera regione lombarda è stato ottenuto come scarto quadratico medio di tutti i buffer areali dei ghiacciai esaminati.

I dati areali e ortometrici del 1991 sono invece stati estratti da un precedente catasto regionale (SGL, 1992) compilato alla fine del XX secolo sulla base di rilievi e foto di terreno (i rilievi si riferiscono al periodo 1989 - 1991; nel testo e nelle tabelle i dati e i confronti sono per uniformità riferiti al solo 1991, anche se per una limitata percentuale di ghiacciai il rilievo è avvenuto in anni precedenti, senza che questo modifichi le tendenze rilevate). Per quanto riguarda accuratezza delle fonti e precisione delle elaborazioni si è fatto riferimento alla risoluzione della cartografia prodotta (i limiti glaciali del 1991 sono riportati in cartografia alla scala 1:10,000 con un’accuratezza nominale di 2 m planimetrici pari all’errore di graficismo).

Tutti i dati sono stati quindi analizzati rispetto a 7 classi dimensional areali (i.e.: < 0.10 km², 0.10-0.5 km², 0.5-1 km², 1-2 km², 2-5 km², 5-10 km² e >10 km²). Le 7 classi areali sono state scelte in accordo a quanto presente nella letteratura internazionale in modo da permettere un utile confronto tra i risultati conseguiti per i
ghiacciai lombardi e quanto calcolato da altri autori analizzando i ghiacciai svizzeri (Paul & alii, 2004) o esaminando gli stessi ghiacciai lombardi per un intervallo temporale minore (Citterio & alii, 2007).

Per valutare l’evoluzione recente della risorsa idrica rappresentata dai glaciali lombardi si sono anche analizzate le variazioni dello spessore e del volume glaciale. Questa analisi è stata svolta sulla base di dati di spessore stimati in modo indiretto applicando algoritmi (Haeberli & Hoelzle, 1995) ai principali parametri morfometrici raccolti nei tre catasti (1992, 1999 e 2003). Più precisamente i volumi glaciali sono stati stimati sulla base dei valori di sforzo di taglio basale (τ) calcolati sulla base di dati geometrici come dislivello altimetrico (calcolato per ciascun ghiacciaio come differenza tra la quota più elevata e quella più bassa), lunghezza massima (i.e.: la massima lunghezza del ghiacciaio misurata lungo la linea di flusso principale) ed area. Lo spessore glaciale medio lungo la linea di flusso centrale è stato stimato per ciascun ghiacciaio a partire da valori di inclinazione media superficiale (calcolata come arco tangente del rapporto tra dislivello altimetrico e lunghezza massima) e sforzo di taglio basale medio lungo la linea di flusso centrale ($\tau_f = \rho g h_f \sin \alpha$, con $f =$ fattore di forma posto pari a 0.8 in tutti i casi, $\rho =$ densità del ghiaccio c. 917 kg/m3, $g =$ accelerazione di gravità, $\alpha =$ inclinazione media superficiale); τ_f dipende in modo non lineare dal dislivello altimetrico del ghiacciaio come funzione del ricambio della massa glaciale (mass turnover, cf. Driedger & Kenrad, 1986; Haeberli, 1985; Haeberli & Hoelzle, 1995; Hoelzle & alii; 2003). I dati di spessore glaciale medio stimati attraverso il metodo analitico sopra descritto sono stati confrontati con i valori medi ottenuti mediando i dati rilevati sul terreno con tecniche di prospezione radar e sismica. Il buon accordo fra i due metodi ha suggerito di estendere l’applicazione del metodo introdotto dai due autori svizzeri all’intero campione lombardo. Il metodo è stato applicato a tutti i ghiacciai esaminati di area superiore a 0,1 km2.

I dati delle stazioni di Bormio e dei Forni (temperatura dell’aria e precipitazioni liquide o equivalenti) sono rilevati a cadenza oraria e registrati nel database generale di ARPA Lombardia; i dati di Avio Diga (temperatura dell’aria, precipitazioni liquide, spessore della neve al suolo) sono rilevati giornalmente e registrati a cura di Enel che gestisce i limitrofi impianti idroelettrici. Tutti i dati meteo-climatici sono stati analizzati per evidenziare la presenza di trend, di massimi, di minimi e di eventuali correlazioni con indici climatici globali (come ad esempio l’Oscillazione Nord Atlantica o NAO).

RISULTATI

Le variazioni areali

I ghiacciai lombardi sono risultati 334 nel 1991, 340 nel 1999 e 348 nel 2003. Le differenze numeriche possono essere dovute sia alle diverse modalità di rilievo, sia alla difficoltà di identificare i limiti degli apparati, sia ad un reale incremento derivante dalla frammentazione di ghiacciai preesistenti. Per effettuare confronti attendibili sono stati utilizzati solo i dati dei ghiacciai presenti contemporaneamente in tutte e tre le serie, che sono risultati 249; sono stati esclusi i ghiacciai presenti nel 1991 ma estinti o non ritrovati nel 1999 e/o nel 2003 (per es. per copertura nevosa) e quelli presenti nel catasto del 1999 e/o in quello del 2003, ma non in quello precedente (per es. a causa del frazionamento di un ghiacciaio in più parti).

L’analisi della distribuzione dei ghiacciai lombardi rispetto alle 7 classi dimensionali nelle tre finestre temporali considerate ha permesso di evidenziare delle variazioni da attribuire alla riduzione areale degli apparati (Tab. 1).

<table>
<thead>
<tr>
<th>Classe dimensionale (km²)</th>
<th>Numero ghiacciai 1991</th>
<th>Numero ghiacciai 1999</th>
<th>Numero ghiacciai 2003</th>
</tr>
</thead>
<tbody>
<tr>
<td><0.1</td>
<td>133</td>
<td>154</td>
<td>170</td>
</tr>
<tr>
<td>0.1-0.5</td>
<td>78</td>
<td>60</td>
<td>49</td>
</tr>
<tr>
<td>0.5-1</td>
<td>16</td>
<td>18</td>
<td>14</td>
</tr>
<tr>
<td>1-2</td>
<td>9</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>2-5</td>
<td>7</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>5-10</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>>10</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>totale</td>
<td>249</td>
<td>249</td>
<td>249</td>
</tr>
</tbody>
</table>
Il numero dei ghiacciai di dimensioni inferiori a 0.1 km2 è aumentato dal 1991 al 2003 a discapito delle classi dimensionali superiori (0.1-0.5 e 0.5-1 km2), che hanno visto molti apparati passare nella classe minore. La riduzione areale ha interessato, seppure con intensità diversa, tutti gli apparati glaciali lombardi.

Per quanto riguarda l’estensione areale e le sue variazioni (Tab. 2), i dati analizzati hanno permesso di constatare che nel 2003, considerando tutti i 249 ghiacciai comunali ai tre catasti, il glacialismo lombardo si estendeva per circa 92.4 km2 ± 0.1 % (sulle ortofoto 2003 è stata rilevata un superficie complessiva di 94.4 km2 estesa su 348 ghiacciai); nel 1999, gli stessi 249 ghiacciai ricoprivano un’area di 104 km2 ± 0.3 %, mentre nel 1992 la superficie dei ghiacciai confrontati raggiungeva i 117.4 km2 ± 0.8 %. La contrazione areale complessiva dei 249 ghiacciai lombardi esaminati nel periodo 1991-2003 è quindi pari a –25 km2 ± 1%; questa riduzione è avvenuta con intensità e velocità diversa e più precisamente tra il 1991 ed il 1999 sono andati persi 12,7 km2 mentre negli ultimi 4 anni il glacialismo lombardo si è ridotto di altri 12,3 km2.

Le variazioni areali sono state calcolate confrontando le aree dei ghiacciai di ciascuna classe dimensionale con quella degli stessi ghiacciai in periodi successivi (ovvero, allo scopo di calcolare le variazioni di superficie si sono tenute fisse le classi dimensionali del 1991 per evitare errori quali falsi aumenti areali delle classi inferiori conseguenti all’aumento numerico degli apparati glaciali a queste afferenti). In questo modo le variazioni di superficie calcolate non sono affette dalle conseguenze dello slittamento dei ghiacciai dalle classi maggiori a quelle inferiori.

TABELLA 2 - Estensione areale dei ghiacciai lombardi per classe dimensionale. Per confrontabilità dei dati si è fatto riferimento alla classe dimensionale di appartenenza nel 1991 e non si sono considerati gli spostamenti dimensionali avvenuti a seguito della riduzione areale testimoniati dalla precedente tabella di distribuzione numerica. I valori riportati in tabella sono in km2.

<table>
<thead>
<tr>
<th>Classe dimensionale (km2)</th>
<th>Area (km2) 1991</th>
<th>Area (km2) 1999</th>
<th>Area (km2) 2003</th>
<th>ΔArea (km2) 1991-2003</th>
<th>ΔArea (km2) 1999-2003</th>
<th>ΔArea (% rispetto all’area totale) 1991-2003</th>
<th>ΔArea (% rispetto all’area totale) 1999-2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.1</td>
<td>5.3</td>
<td>4.1</td>
<td>3.2</td>
<td>-2.1</td>
<td>-0.9</td>
<td>-8.3</td>
<td>-7.2</td>
</tr>
<tr>
<td>0.1-0.5</td>
<td>17.6</td>
<td>13.1</td>
<td>10.4</td>
<td>-7.2</td>
<td>-2.7</td>
<td>-28.9</td>
<td>-22.2</td>
</tr>
<tr>
<td>0.5-1</td>
<td>11.7</td>
<td>10.0</td>
<td>7.9</td>
<td>-3.8</td>
<td>-2.1</td>
<td>-15.3</td>
<td>-17.3</td>
</tr>
<tr>
<td>1-2</td>
<td>11.2</td>
<td>10.9</td>
<td>8.7</td>
<td>-2.5</td>
<td>-1.3</td>
<td>-9.8</td>
<td>-10.2</td>
</tr>
<tr>
<td>2.5</td>
<td>19.0</td>
<td>16.9</td>
<td>14.3</td>
<td>-4.7</td>
<td>-2.6</td>
<td>-18.9</td>
<td>-21.3</td>
</tr>
<tr>
<td>5-10</td>
<td>21.8</td>
<td>20.9</td>
<td>19.6</td>
<td>-2.0</td>
<td>-1.3</td>
<td>-7.9</td>
<td>-10.2</td>
</tr>
<tr>
<td>>10</td>
<td>31.0</td>
<td>29.7</td>
<td>28.5</td>
<td>-2.5</td>
<td>-1.4</td>
<td>-10.8</td>
<td>-11.5</td>
</tr>
<tr>
<td>totale</td>
<td>117.4</td>
<td>104.7</td>
<td>92.4</td>
<td>-25.0</td>
<td>-12.3</td>
<td>-100.0</td>
<td>-100.0</td>
</tr>
</tbody>
</table>
In sintesi la perdita di superficie glaciale dal 1991 al 2003 assomma a 25 km$^2 \pm 1$ % e il maggior contributo (-7.2 km2 pari a -28.9%) alla contrazione è stato fornito dai ghiacciai che nel 1991 erano stati classificati nella classe dimensionale 0.1 - 0.5 km2. Questi ghiacciai di piccole-medie dimensioni rappresentavano nel 2003 circa l’11% della superficie glacializzata totale. Se si analizza l’intervallo temporale 1999-2003 la perdita di superficie glacializzata è pari a 12.3 km$^2 \pm 1$ % e di nuovo il contributo più importante alla riduzione è stato dato dai ghiacciai della seconda classe dimensionale (0.1 - 0.5 km2) che hanno perso -2.7 km2 pari al 22.2% delle perdite complessive.

Se consideriamo tutti i ghiacciai di superficie inferiore ad 1 km2 (ovvero i 233 ghiacciai che nel 1991 afferivano alle prime tre classi dimensionali), si osserva che questi, pur ricoprendo nel 1991 meno del 30% della superficie glacializzata lombarda, nel periodo 1991-2003 hanno contribuito ad oltre il 50% delle perdite areali regionali. I ghiacciai di dimensioni maggiori, invece, ovvero gli apparati di area superiore ai 5 km2, che nel 1991 rappresentavano oltre il 50% della superficie glaciale regionale, hanno contribuito alla riduzione glaciale lombarda per meno del 20% (fig. 3).

L'analisi delle ortofoto ha anche permesso di valutare le variazioni di estensione altitudinale dei ghiacciai lombardi attraverso il confronto delle quote minime (frontali) e massime (limite superiore del bacino glaciale) dei 249 ghiacciai esaminati; è risultato che la quota minima è variata da una media di 2690 m nel 1991 a 2745 m nel 2003, mentre la quota media massima si è portata dai 3043 m nel 1991 ai 2985 m del 2003. L’innalzamento delle quota minima e l’abbassamento della massima indicano complessivamente una riduzione dell’estensione altimetrica media dei ghiacciai lombardi che insieme all’intensa perdita areale indica una forte riduzione della risorsa glaciale regionale.

Oltre alle considerazioni sopra riportate, ottenute analizzando il campione completo dei 249 ghiacciai presenti in tutti e tre i catasti regionali, è parso interessante anche valutare le variazioni areali dei ghiacciai lombardi non considerando i ghiacciai di minori dimensioni (< 0.1 km²), le cui caratteristiche tipologiche e dinamiche sono spesso oggetto di dibattito nella comunità scientifica.

I ghiacciai di dimensione inferiore ai 10 ettari (ovvero 0.1 km²) sono in genere classificati come glacionevati (o glacieret nell’accezione internazionale), ovvero piccoli apparati dalla dinamica incerta che spesso preludono all’estinzione. Alcuni autori considerano non rappresentative le variazioni geometriche (area e spessore) di questi apparati numericamente molto diffusi sia sulle Alpi Italiane che sui settori francesi, austriaci e svizzeri. Per valutare l’effettivo ruolo dei ghiacciai più piccoli (prima classe dimensionale in Tab. 1) nelle variazioni recenti dei ghiacciai lombardi sono state ricalcolate le perdite areali escludendo questa classe.

I ghiacciai di area superiore ai 10 ettari (>0,1 km²) nel 1991 erano 116 (circa il 47% del totale numerico) e ricoprivano una superficie di 112.1 km² (circa il 95% dell’estensione totale). La variazione areale del periodo 1991-2003 calcolata considerando solo questi 116 apparati assomma a -22,9 km² (circa il 92% del valore calcolato in precedenza considerando tutti i 249 ghiacciai). La perdita areale calcolata per il periodo più recente (1999-2003), calcolata considerando sempre i soli ghiacciai più estesi di 10 ettari, è risultata invece di 11,4 km² (circa il 93% della perdita calcolata considerando tutti i 249 ghiacciai).

Si sono poi considerate nel calcolo delle variazioni areali solo le classi dimensionali 0.1-0.5 km² e 0.5-1.0 km², che sono risultate pari a –11 km² nel periodo 1991-2003 e a –4.8 km² nell’intervallo 1999-2003; questi valori corrispondono a circa il 48% ed il 42% della variazione totale di ciascuno dei due periodi considerati. Questi risultati evidenziano l’importante ruolo giocato dai ghiacciai inferiori al km² di area nella riduzione complessiva. I risultati ottenuti ommettendo i ghiacciai della classe <0,1 km², inoltre, confermano quanto già evidenziato dalle variazioni areali totali e permettono di affermare che considerare anche i ghiacciai più piccoli non modifica il significato e l’intensità delle variazioni glaciali calcolate.
Il calcolo delle variazioni areali medie annue per il periodo 1991-1999 e per l’intervallo 1999-2003 (Tab.3), indica una chiara accelerazione della riduzione glaciale in atto che è passata da 1.8 km2/anno nel primo periodo ad una contrazione media di 3.1 km2/anno tra il 1999 ed il 2003 a fronte di una media 1991-2003 di -2.3 km2 (i valori sono calcolati omettendo i ghiacciai minori di 10 ettari).

<table>
<thead>
<tr>
<th>Classe dimensionale (km2)</th>
<th>Intervallo temporale</th>
<th>Intervallo temporale</th>
<th>Intervallo temporale</th>
</tr>
</thead>
<tbody>
<tr>
<td><0.1</td>
<td>-0.2</td>
<td>-0.2</td>
<td>-0.2</td>
</tr>
<tr>
<td>0.1-0.5</td>
<td>-0.6</td>
<td>-0.7</td>
<td>-0.7</td>
</tr>
<tr>
<td>0.5-1</td>
<td>-0.2</td>
<td>-0.5</td>
<td>-0.3</td>
</tr>
<tr>
<td>1-2</td>
<td>-0.2</td>
<td>-0.3</td>
<td>-0.2</td>
</tr>
<tr>
<td>2-5</td>
<td>-0.3</td>
<td>-0.6</td>
<td>-0.4</td>
</tr>
<tr>
<td>5-10</td>
<td>-0.1</td>
<td>-0.3</td>
<td>-0.2</td>
</tr>
<tr>
<td>>10</td>
<td>-0.2</td>
<td>-0.4</td>
<td>-0.2</td>
</tr>
<tr>
<td>totale</td>
<td>-1.8</td>
<td>-3.1</td>
<td>-2.3</td>
</tr>
</tbody>
</table>

LE VARIAZIONI VOLUMETRICHE

Relativamente alle variazioni volumetriche, l’applicazione del metodo analitico sopra descritto ha portato alla quantificazione di un volume totale di ghiaccio per l’intero campione considerato di 5.15 km3 nel 1991 (corrispondenti ad una riserva idrica di 4.72 km3), di 4.72 km3 nel 1999 (riserva idrica 4.33 km3) e di 4.26 km3 nel 2003 (corrispondenti a 3.91 km3 di acqua).

Le elaborazioni hanno evidenziato che tra il 1991 ed il 1999 il glacialismo lombardo ha subito una riduzione volumetrica di circa 0.379 km3 di ghiaccio, nel periodo successivo (1999-2003) la quantità di ghiaccio persa è aumentata ed ha raggiunto 0.388 km3, portando la perdita complessiva nel decennio esaminato (1991-2003) a 0.766 km3 di ghiaccio, pari ad un volume di acqua di circa 0.697 km3. Un simile valore è confrontabile con il volume di acqua contenuto in circa 7 grandi invasi artificiali presenti sul territorio lombardo per la produzione di energia idroelettrica (ricordiamo a titolo di esempio che il bacino di S. Giacomo in alta Valtellina rag-
giunge un volume di 64 milioni di metri cubi d’acqua, mentre quello di Cancano, uno dei più grandi della nostra regione, racchiude oltre 120 milioni di metri cubi di acqua. La perdita media volumetrica è stata stimata pari a circa -0.05 km3/anno di ghiaccio nel periodo 1991-1999, è aumentata raggiungendo i -0.10 km3/anno nell’intervallo 1999-2003 ed in media è risultata pari a -0.07 km3/anno tra il 1991 ed il 2003.

La variazione media di spessore dei ghiacciai lombardi nel periodo 1991-2003 (calcolata rispetto alla superficie reale ricoperta nel 1991 dai 116 ghiacciai esaminati, pari a 112.1 km2) è risultata pari a circa -6.84 m pari ad un valore medio annuo di -0.6 m. Nel periodo 1991-1999 la variazione di spessore glaciale medio è stata di -3.4 m (pari a -0.4 m/anno). Tra il 1999 ed il 2003 lo spessore di ghiaccio perso in media dai ghiacciai lombardi (riferito alla copertura areale 1999 dei ghiacciai con area maggiore di 0.1 km2, pari a 100.6 km2), è risultato di circa -3.9 m pari ad un valore medio di -0.96 m/anno.

Anche questi dati evidenziano un’accelerazione della contrazione dei ghiacciai lombardi e risultano inoltre molto vicini ai valori di variazione di spessore media annua ottenuta elaborando i bilanci di massa dei ghiacciai alpini italiani e non (IAHS (ICSI) - UNEP – UNESCO, 1988-2005).

VARIAZIONI FRONTALI E BILANCI DI MASSA

Anche le altre metodologie, sia quelle tradizionali in uso da molto tempo (da un secolo per le misure di variazioni frontal e da un ventennio per i bilanci di massa) sia quelle più moderne (confronti di immagini da satellite) confermano che il glacialismo lombardo è in una fase di regressione accelerata; Bellingeri & Zini, questo volume; Galluccio & Scotti, 2008).

Per quanto riguarda variazioni frontal e bilanci di massa si riporta come unico esempio quello del Ghiacciaio della Sforzellina, piccolo apparato del gruppo Cevedale in alta Valtellina, che per dimensioni (< 0,5 km2) e per tipologia ben può rappresentare il glacialismo lombardo.

In fig. 4 è riportata la curva cumulata con le variazioni rilevate dal 1925 ad oggi a cura degli operatori del Comitato Glaciologico Italiano (CGI). I dati permettono di apprezzare un’accelerazione nell’intensità del ritiro glaciale. Se si considerano solo gli ultimi 35 anni di storia del ghiacciaio (1971-2006), si osserva che per 25 anni si registra un regresso, che il ritiro medio sull’intero periodo è di circa 2 m/anno, che il ritiro medio 1985-1995 è lievemente più intenso (circa 2.6 m/anno) e che il ritiro medio dell’ultima decade (1996-2006) risulta quasi duplicato: (circa 5 m/anno). Nella fig. 5 sono riportati i dati del bilancio di massa dal 1987 al 2006, che risultano
tutti negativi con l’eccezione del 2001, e le quote della linea di equilibrio (ELA). La riduzione totale di spessore dal 1987 al 2007 è stata di circa 21 m di equivalente in acqua. A fronte di un volume totale misurato nel 1999 con metodi geofisici (radar) risultante di circa 7.9 x 10⁶ m³ di acqua, dal 1987 al 2000 il ghiacciaio ha perso in media 0.30 x 10⁶ m³ di acqua all’anno che dal 2001 al 2006 sono diventati 0.50 x 10⁶ m³/anno.

FIG. 4 - Variazioni frontali cumulate (valori in m) del Ghiacciaio della Sforzellina (alta Valtellina, Lombardia)

FIG. 5 - Bilanci di massa del Ghiacciaio della Sforzellina
DINAMICA CLIMATICA

Per trovare le motivazioni meteo-climatiche della dinamica dei ghiacciai lombardi sopra presentata e considerando, seppur in modo semplicistico, temperature e precipitazioni le forzanti principali, si sono analizzati i dati di alcune stazioni lombarde. Inizialmente si è valutata l’evoluzione su lungo periodo (1940-2005) dei dati termici registrati alla stazione di Bormio (1225 m); successivamente si sono presi in esame nell’intervallo 1966-2006 i dati termici e di precipitazioni sia di Bormio che di Avio Diga (1860 m) e per gli ultimi due decenni (1988-2005) si sono confrontati i dati di Bormio con quelli registrati alla stazione dei Forni (2180 m).

In Fig. 6 sono presentate le anomalie termiche del periodo 1940-2005 (calcolate come scarti rispetto al valor medio del trentennio 1961-1990 indicato dalla World Meteorological Organization – WMO- come trentennio di riferimento); il loro andamento è comparabile con quello ottenuto da Beniston (2006) analizzando le anomalie termiche annue di tre stazioni alpine svizzere. Il riscaldamento che emerge dai dati di Bormio dal 1980 in poi è sincrono a quello globale, ma presenta un’intensità ben maggiore. Questo è in accordo anche a quanto ottenuto da Ciccarelli & ali (2008), che hanno analizzato la variabilità climatica delle Alpi Italiane Nord Occidentali nella seconda metà del XX secolo. Questi autori suggerivano un incremento termico medio per questo settore delle Alpi Italiane di circa 1°C negli ultimi 50 anni.

FIG. 6 - Anomalie termiche annue (in °C) calcolate per la stazione di Bormio rispetto alla media del trentennio 1961-1990.

FIG. 7 - Anomalie termiche annue (in °C) calcolate per le stazioni di Bormio (1225 m) e di Avio Diga (1860 m) rispetto alla media del periodo 1966-2006. Le due rette rappresentano le interpolanti lineari alle due serie di dati
La tendenza generale evidenziata da ciascuna serie di anomalie termiche in Fig. 6 sicuramente riflette le condizioni stazionali (quota, esposizione, localizzazione geografica, etc.), ciononostante è chiaramente apprezzabile dal confronto delle due rette interpolanti una comune tendenza all'aumento che per entrambe le stazioni avviene a partire dagli anni ’80 del secolo scorso. Questa fase calda, sincrona con quanto è avvenuto anche a scala emisferica e globale, presenta maggior intensità ad Avio Diga dove l’aumento supera gli 0.8°C nel periodo molto recente (1999-2003) valore pari a circa tre volte l’intensità delle variazioni termiche globali. Risultati simili sono riportati da diversi autori che hanno analizzato dati termici rilevati presso stazioni alpine e/o montane (Diaz & Bradley, 1997).

Per quanto concerne le precipitazioni, i dati più importanti sono sicuramente quelli delle precipitazioni solide che, come è noto, costituiscono la principale fonte di alimentazione dei ghiacciai alpini. I dati della stazione di Bormio e dei Forni si riferiscono ai valori in acqua equivalenti e permettono di quantificare un decremento medio dal 1988 ad oggi di circa il 10%.

I dati raccolti alla stazione Avio Diga sono invece riferiti agli spessori nivali misurati quotidianamente dal 1966 al 2006. Nel grafico di Fig. 8 sono state analizzate le anomalie annue (calcolate rispetto alla media 1966-2006) dello spessore nivale riportato in equivalenti in acqua (m water equivalent o w.e.).

Fig. 8 - Anomalie annue (in m w.e.) dello spessore nevoso calcolate per la stazione di Avio Diga (1860 m) rispetto alla media del periodo 1966-2006. La retta rappresenta l’interpolante lineare.

La diminuzione dello spessore nivale potrebbe venire attribuita alla variabilità interannuale dell’Oscillazione Nord Atlantica (NAO, North Atlantic Oscillation). Durante l’ultimo decennio del XX secolo si sono spesso registrati valori positivi dell’indice barico tra Islanda ed Azzorre, indice che è appunto indicato come Oscillazione Nord Atlantica o NAO. La NAO rappresenta sicuramente un valido indicatore dell’intensità della circolazione atmosferica generale sull’area Nord Atlantica e secondo alcuni autori la sua variabilità può spiegare oltre il 60% delle oscillazioni climatiche dell’America Settentrionale e dell’Europa Centrale ed Occidentale (Hurrell, 1995). Negli anni nei quali si registra un valore dell’indice NAO elevato, nell’area alpina si verificano spesso precipitazioni minori alla media e temperature dell’aria superiori ai valori medi stagionali. L’influenza della NAO sui dati termici, secondo alcuni studiosi (Beniston & Jungo, 2002), potrebbe raggiungere anche un grado centigrado per i valori minimi. L’influenza sull’accumulo nevoso della variabilità della NAO può venire apprezzata confrontando le anomalie dei dati di spessore nivale di Avio Diga nel periodo 1966-2006 con i valori dell’indice NAO calcolati sempre nell’intervallo 1966-2006 per i mesi dell’anno invernali-primaverili (Gennaio-Marzo) (Fig. 9). I dati NAO sono stati tratti da Jones & alii, (1997) e da Osborn (2004; 2006).

Il grafico permette di osservare che a valori positivi dell’indice NAO invernale-primaverile corrispondono (con r =-0,51) anomalie negative dello spessore nivale e viceversa.

FIG. 9 - Anomalie annue (in m w.e.) dello spessore nevoso calcolate per la stazione di Avio Diga (1860 m) rispetto alla media del periodo 1966-2006 a confronto con l’indice NAO dei mesi di Gennaio-Marzo.
Analogamente sono stati confrontati i valori delle anomalie termiche annue, calcolate rispetto al valore medio 1966-2006, delle stazioni di Bormio e di Avio Diga con i dati di indice NAO dei mesi di Gennaio-Marzo (Fig. 10). I dati termici risultano chiaramente correlati all’indice NAO (r = +0.59 e r = +0.56, rispettivamente Bormio e Diga Avio). Durante i periodi di indice NAO positivo le anomalie termiche sono più intense, questo fa supporre che in tali periodi vi siano condizioni più favorevoli ad una precoce fusione nivale e quindi ad una minore alimentazione dei ghiacciai. La frequenza con la quale si sono verificate annate con indice NAO positivo cresce negli anni ’90 del XX secolo ed in particolare raggiunge picchi intensi tra il 1998 ed il 2002, suggerendo un importante ruolo della NAO nel promuovere la fusione nivale e quindi nell’accelerare il declino dei ghiacciai lombardi.

CONCLUSIONI

I ghiacciai lombardi hanno subito una notevole riduzione areale e volumetrica nell’ultimo decennio passando da 117.4 km² nel 1991 a 92.4 km² nel 2003 e perdendo quindi 25 km² (-21,3%); questa riduzione è avvenuta con intensità e velocità diversa e più precisamente tra il 1991 ed il 1999 sono andati persi 12,7 km² (1.8 km²/anno), mentre negli ultimi 4 anni il glacialismo lombardo si è ridotto di altri 12,3 km² (3,1
km²/anno) (i valori sono calcolati tralasciando i ghiacciai minori di 10 ettari). Il maggior contributo (-7.2 km², pari a -28.9%) alla contrazione è stato fornito dai ghiacciai che nel 1991 erano stati classificati nella classe dimensionale 0.1-0.5 km². Per quanto riguarda volumi e spessori tra il 1991 ed il 1999 il glacialismo lombardo ha subito una riduzione volumetrica di circa 0.379 km³ di ghiaccio (-0.05 km³/anno), mentre nel periodo successivo (1999-2003) la quantità di ghiaccio persa è aumentata ed ha raggiunto 0.388 km³ (-0.10 km³/anno), portando la perdita complessiva nel decennio esaminato (1991-2003) a 0.766 km³ di ghiaccio, pari ad un volume di acqua di circa 0.697 km³. La variazione media di spessore nel periodo 1991-2003 è risultata di -6.84 m (-0.6 m/anno); fra il 1991 e il 1999 la variazione di spessore ghiacciale medio è stata di -3,4 m (pari a -0.4 m/anno), mentre fra il 1999 ed il 2003 lo spessore di ghiaccio perso in media è risultato di circa -3,9 m (-0.96 m/anno). A fronte di questa intensa riduzione segnata da un’accelerazione negli anni più recenti, si sono misurati incrementi della temperatura media annua fra il 1991 e il 2003 compresi fra 0.4°C e 0.5 °C, che fra il 1999 e il 2003 salgono a 0.8°C; contemporaneamente si registra un decremento medio delle precipitazioni di circa il 10% con un decremento dello spessore nivale (circa -11.4%) nel periodo 1999-2003 rispetto alle media 1966-2006. Questi fenomeni risultano correlati agli indici NAO (Oscillazione Nord Atlantica), che rappresentano sicuramente un valido indicatore dell’intensità della circolazione atmosferica generale sull’area Nord; negli anni in cui si registra un valore dell’indice NAO elevato, si osservano precipitazioni minori della media e temperature dell’aria superiori ai valori medi stagionali. Le riduzioni areali e volumetriche dei ghiacciai lombardi, con un’accelerazione negli ultimi anni, la contemporanea riduzione della distribuzione altitudinale, insieme ai bilanci e alle variazioni frontalili costantemente negative, indicano un quadro di intensa degradazione, evidenziata anche dalle osservazioni di terreno, come emersione di finestre rocciose, frammentazione delle lingue, formazione di laghi di contatto glaciale, incremento della copertura detritica superficiale, fenomeni di collasso, fenomeni ben evidenti anche nelle ortofoto 2003. E’ uno scenario che richiama un “collasso” della criosfera piuttosto che una risposta dinamica ai cambiamenti climatici, come già evidenziato da Paul & alii, (2007). E’ quindi improbabile che l’attuale tendenza possa concludersi o invertirsi in un prossimo futuro (fig. 11).
FIG. 11 - L’evoluzione del Ghiacciaio dei Forni in alta Valtellina (gruppo del Cevedale): a) 1890 (foto V. Sella); b) 1941 (foto A. Desio); c) 1997 (foto C. Smiraglia); d) 2007 (foto C. Smiraglia); e) 2050? (scenario di G. Leonelli).
BIBLIOGRAFIA

BENISTON M. (2006) - Mountain weather and climate; a general overview and a focus on climatic change in the Alps. Hydrobiologia, 562, 3-16

Volo Italia 2000, Program "it2000™/TerraItaly™98/99"
http://www.terraitaly.it/product.tpl

Volo Italia 2003, Program "it2003™/TerraItaly™2003"
http://www.terraitaly.it/product.tpl

IL PERMAFROST: LA COMPONENTE “INVISIBILE” DELLA CRIOSFERA

L’aumento dell’interesse per il permafrost dopo l’estate 2003, in cui la sua fusione venne indicata come uno dei responsabili di diversi fenomeni di dissesto idrogeologico, ha certamente accresciuto la sensibilità anche delle amministrazioni locali per la conoscenza di questo componente della criosfera. In questo lavoro vengono presentate brevemente le principali metodologie per l’individuazione del permafrost (rilevamento geomorfologico, idrogeologico, vegetazionale, STG, BTS, metodi geofisici, remote sensing), per la sua modellazione (modelli spaziali empirici e fisici) e per la sua analisi come indicatore climatico e paleoclimatico.

Infine viene anche presentata una sintesi sulla conoscenza del permafrost in Italia e in Lombardia in particolare, ove la distribuzione è comunque a macchia di leopardo, persino all’interno dei singoli rock glacier dai 2000 sino ad oltre 3000 m di quota. A quote più elevate, dove sono assenti i ghiacciai, la presenza è più continua. Localmente corpi isolati si possono rinvenire anche a quote più basse (sino a 1700 m). Lo spessore medio è di circa 20 m anche se può superare i 200 m. Lo strato attivo è assai variabile anche se in generale è compreso tra 1 e 3 m, anche se spesso, specie a quote inferiori i 2700 m è compreso tra 3 e 5 m. In tutti i sondaggi monitorati le temperature del permafrost sono sempre superiori a – 3 C° e spesso presentano profili isotermali.

ABSTRACT: GUGLIELMIN MAURO, Permafrost: the hidden part of the criosphere

After 2003 summer the interest for permafrost increased because permafrost “thawing” was supposed as a responsible for triggering of several rockfalls and landslides and therefore also the sensibility of the public administrations for per-
mafrost knowledge “rose” up. In this paper, the main methodologies for detecting permafrost distribution (geomorphologic, hydrogeologic, vegetational surveys, STG, BTS, geophysical prospecting, remote sensing), the permafrost modelling (empirical and physical oriented models) and the analysis of permafrost as climatic and paleoclimatic indicator were presented. Moreover, a summary of the knowledge on permafrost in Italy and in particular in Lombardia is shown. Here, permafrost distribution is patchy between 2000 and 3000 m a.s.l. even within rock glaciers while above 3000 m a.s.l. in the ice-free areas permafrost occurrence is more widespread. Locally isolated permafrost islands can occur at lower altitudes down to 1700 m a.s.l.. Permafrost thickness is around 20 m on average but it can exceeds 200 m. Active layer thickness is much more variable with an average between 1 and 3 m above 2700 m a.s.l. while at lower elevations is between 3 and 5 m. Permafrost temperature profiles appear isothermal with values always higher than -3°C.
INTRODUZIONE

Recentemente, l’interesse per il permafrost si è notevolmente accresciuto sia presso le Autorità Locali che presso i media, soprattutto dopo l’estate 2003, una delle più calde degli ultimi 500 anni, in cui la fusione del permafrost venne indicata come uno dei responsabili di diversi fenomeni di dissesto idrogeologico come le frane del Cervino o di alcune cime delle Dolomiti.

Proprio prendendo spunto da quegli episodi, si devono fare profonde riflessioni perché, anche nel mondo scientifico, il permafrost è una componente della criosfera terrestre ancora poco conosciuta e per cui persiste una certa confusione terminologica. Il permafrost inoltre è rimasto e rimane ancora pressoché sconosciuto in Italia, perché contrariamente agli altri componenti della criosfera non è visibile, in quanto non è come molti credono un tipo di ghiaccio, bensì una condizione fisica dei materiali.

Il permafrost è infatti “qualsiasi materiale che rimane ad una temperatura inferiore a 0°C per almeno più di due anni consecutivi” (Brown & Kupsch, 1974). Tale definizione chiaramente indica che il permafrost può essere totalmente asciutto, privo pertanto di ghiaccio, può contenere diversi tipi di ghiaccio o può contenere anche acqua allo stato liquido, in quanto nei materiali lapidei e nei sedimenti la temperatura di congelamento dell’acqua può essere da pochi decimi a diversi gradi al di sotto degli 0°C, sia a causa della presenza di sali che di gradienti idraulici o di tensioni superficiali all’interno dei vuoti.

Per quanto appena espresso, è chiaro quindi che non è corretto parlare di fusione del permafrost in quanto può non esserci niente da fondere. L’altro diffuso luogo comune è che si associa al permafrost l’immagine di sedimenti congelati delle aree polari e subpolari dell’emisfero settentrionale, mentre il permafrost è presente anche nelle rocce e nei sedimenti grossolani delle aree montane delle medie latitudini o addirittura sui bassi fondali dei mari artici e antartici o nelle aree deglaciate dell’Antartide.

Un’altra caratteristica che rende “misterioso” il permafrost è che, durante la stagione estiva è sempre sottostante ad uno strato più o meno potente (da pochi centimetri in Antartide a 4-5 m e più nelle aree montane delle medie latitudini) di sedimenti o di roccia con temperature che rimangono positive da qualche giornata a diversi mesi all’anno detto “Strato Attivo” (French, 1996; fig. 1).
FIG. 1 - Regime Termico nel permafrost: definizioni (da Van Everdingen., 1985)

Di conseguenza è veramente difficile individuare dove il permafrost sia presente, ma ancor di più dove sia presente al suo interno ghiaccio, a quale profondità e a che temperatura.

La stabilità dei versanti, e più in generale dei materiali in ambiente criotico, ossia in condizioni di permafrost, è fortemente condizionata dalla distribuzione areale e verticale (in profondità) del permafrost, ma ancor più dalla distribuzione del ghiaccio, della sua tipologia e della sua temperatura all’interno del permafrost stesso.

Il permafrost inoltre è una componente della criosfera che non deve essere studiata ed analizzata solo ai fini della prevenzione dei rischi idrogeologici, ma anche perché le sue caratteristiche e le variazioni delle stesse possono modificare fortemente anche l’intero ecosistema montano partendo dalla vegetazione (Cannone & alii, 2007), influendo sulla biodiversità e sulla evoluzione ecosistemica.

Ma perché il permafrost si può formare?

Il permafrost si forma conseguentemente ad un bilancio energetico deficitario della superficie per cui la temperatura superficiale rimane per la maggior parte dell’anno al di sotto degli 0°C. Tale bilancio energetico dipende quindi dalle condizioni climatiche e dalle caratteristiche della superficie stessa. La variazioni della superficie, in particolare per quanto riguarda l’albedo e la rugosità che influiscono rispettivamente sul bilancio radiativo e sui flussi di calore sensibile e latente possono, a parità di input climatico far variare significativamente di diversi gradi la temperatura superficiale.
Le variazioni della superficie sono quindi fondamentali nel variare le condizioni del permafrost, quindi sia le variazioni di vegetazione che le variazioni legate a modificazioni antropiche (es. impianti sciistici, strade, etc) e, soprattutto le variazioni areali e temporali di copertura nevosa, sono fondamentali nell’equilibrio di questa componente criosferica (Guglielmin, 2004; 2006).

Risulta chiaro quindi che il clima, ed in particolare la temperatura dell’aria e la radiazione solare, concorrono in modo fondamentale direttamente nel bilancio, ma è altrettanto chiaro che in ambito alpino la precipitazione nevosa e ancor più il suo accumulo al suolo, fortemente condizionato dalle caratteristiche superficiali e dal vento, sono fondamentali nel consentire la formazione del permafrost, la sua aggressione (aumento) o nel determinare la sua degradazione (diminuzione).

Il permafrost è quindi anche un indicatore del cambiamento climatico, utilizzabile sia per monitorare il cambiamento stesso sia per ricostruire la storia del clima del passato.

L’accuratezza e la risoluzione temporale ottenibili sia nel monitoraggio che nelle ricostruzioni paleoclimatiche dipendono dai metodi utilizzati, ma sempre bisogna ricordare che il permafrost fornisce indicazioni sulla temperatura della superficie che è espressione del bilancio energetico e non solo della temperatura dell’aria.

Lo sviluppo areale e, soprattutto, verticale del permafrost (il suo spessore), come quello del sovrastante strato attivo, dipendono molto però anche dalle caratteristiche termiche dei materiali coinvolti ed in particolare dalla quantità di ghiaccio/acqua contenuti nei sedimenti o nelle rocce. A parità infatti di temperatura superficiale, a causa della diversa conducibilità e capacità termica lo spessore del permafrost e dello strato attivo possono variare in modo molto significativo. Ne deriva quindi che per una buona mappatura del permafrost sono necessarie anche buone informazioni litologiche.

Il presente lavoro vuole quindi essere un contributo al miglioramento delle conoscenze relativamente a questa componente della criosfera con qualche esplicito riferimento alla realtà italiana ed allo stato di conoscenze attuale nel nostro territorio.

METODI DI INDIVIDUAZIONE DEL PERMAFROST

Diversi sono i metodi di individuazione del permafrost, principalmente indiretti in quanto la presenza del permafrost può essere verificata direttamente solo con l’esecuzione di sondaggi che raggiungano la tavola del permafrost e vengano poi attrezzati per la misura della loro temperatura. Tra i metodi indiretti il rilievo geomorfologico si basa sull’individuazione di forme correlate al permafrost, mentre il rilievo vegetazionale si basa sul fatto che alcune specie o associazioni pos-
sono essere indicatrici di fattori climatici predisponenti alla presenza di permafrost. Tra gli altri metodi si possono distinguere quelli termici (che misurano temperature superficiali o della parte superiore dello strato attivo) da quelli geofisici che in realtà individuano la presenza di ghiaccio e non di permafrost. Infine un cenno merita il remote sensing che in genere misura o spostamenti della superficie correlabili con forme attive correlate a loro volta con il permafrost o caratteristiche superficiali, quali di nuovo vegetazione, stato di saturazione o temperatura con la possibile presenza di permafrost nel sottosuolo.

Rilevamento geomorfologico

Il rilevamento geomorfologico di terreno è indispensabile sia per il controllo delle forme individuate sia per segnalare quelle forme di piccola scala non risolvibili in fotointerpretazione. Le forme esclusive della presenza del permafrost in realtà non sono molto diffuse in ambito alpino o non molto facili da riconoscere in modo chiaro e non ambiguo. I lobi di geliflusso che possono essere di pietre (stone-banked lobes and terraces) o di terreno vegetato (turf-banked lobes and terraces) non sono infatti facilmente distinguibili dai lobi di soliflusso del tutto ubiquitari, mentre i block streams, i protalus rampart e i rock glaciers non sono sempre o da tutti gli autori ritenuti esclusivamente indicatori della presenza di permafrost. Comunque questi ultimi sono stati e sono usati per mappare la presenza di permafrost, ma recentemente alcuni autori (fra gli altri, Guglielmin & alii, 2004; Ribolini & alii, 2007) hanno evidenziato come alcuni di questi rock glacier possano contenere tipi diversi di ghiaccio anche glaciale, riflettendo possibili evoluzioni morfologiche più complesse (Fig. 2). In ogni caso l’uso dei rock glaciers come indicatori della presenza di permafrost deve essere fatto in modo critico in quanto questi rappresentano condizioni particolarmente favorevoli alla formazione del permafrost (diversi fenomeni legati alla elevata rugosità dovuta alla presenza dei grossi blocchi superficiali, quali Effetto Balch, etc.) (es. Harris & Pedersen, 1998), oltre a fluire per creep e pertanto tendono ad indicare quote più basse di quelle dell’ambiente circostante.
Rilevamento idrogeologico

Tra le caratteristiche fisiche delle acque sorgive il parametro più significativo è la temperatura: infatti a parità di quota, le sorgenti localizzate in corrispondenza di terreni con permafrost presentano temperature estive nettamente inferiori a quelle delle sorgive circostanti, comunque con valori sempre inferiori a 1,7 °C (Evin, 1984). Discriminante degli acquiferi in permafrost è il carico in sospensione che, al contrario del carico disciolto, è sempre molto più basso di quello delle acque di fusione glaciale. Anche dal chimismo delle acque si possono ricavare utili informazioni sulla presenza di permafrost in quanto diversi processi chimici di alterazione e di pedogenesi vengono limitati o impediti nel permafrost o concentrati nello strato attivo.
Rilevamento vegetazionale

I diversi tipi di associazione vegetale possono indicare la diversa distribuzione del manto nevoso invernale (Cannone & alii, 2006; Granberg, 1988) o il tipo di drenaggio del suolo e quindi indirettamente la presenza del permafrost. Più problematico è invece l’uso delle associazioni o delle specie indicatrici di movimento in quanto questo può essere provocato anche da altri meccanismi periglaciali ma non legati alla presenza di permafrost e d’altro canto talora il creep profondo del permafrost non viene risentito dalle piante che “galleggiano” al di sopra a causa di apparati radicali superficiali.

Metodi Termici

L’analisi dei profili termici nella parte più superficiale dei terreni, ovvero nello strato attivo, durante la stagione estiva, detta anche STG (Shallow Temperature of Ground in summertime), consente di valutare la presenza o meno del permafrost, lo spessore dello strato attivo e le variazioni di quest’ultimo in funzione dei cambiamenti climatici. In ambito alpino si è visto che misurando la temperatura nei primi 30 cm (sempre raggiungibile senza attrezzatura particolari) nel periodo di massima fusione ed utilizzando il gradiente tra 20 e 30 cm si può ottenere una stima, spesso ragionevole della presenza di permafrost e della profondità dello strato attivo (Guglielmin, 1997).

Il metodo però più utilizzato è il BTS (Bottom Temperature of winter Snow cover), metodologia che consiste nella misurazione della temperatura alla base del manto nevoso al termine della stagione invernale. Tale metodologia, è stata introdotta negli anni ’70 da ricercatori svizzeri, in particolare Haeberli (1973), ed è basata sul concetto che la copertura nevosa, quando sia sufficientemente consistente, agisce come isolante termico. In genere si considera uno spessore minimo di 80 cm, ma talvolta è necessario uno spessore maggiore in funzione della densità della neve. Fondamentale è anche che non ci siano brusche variazioni del manto nevoso o zone emergenti nel raggio di alcuni metri rispetto al punto di misura.

Tradizionalmente si considerano valori inferiori a –3°C come indicatori della alta probabilità (> 75%) di riscontrare permafrost, mentre quelli compresi tra –2 e –3°C di probabilità più bassa (25-75%) ed infine quelli con valori superiori a –2°C come indicatori di assenza o scarsa probabilità (<25%). In Italia si è visto che la soglia tra alta probabilità e bassa era leggermente più alta (-1.7°C, Guglielmin & alii, 1994, fig. 3), ma soprattutto vale la pena ricordare che tali valori soglia potrebbero variare in funzione dello spessore dello strato attivo. Infatti con valori di strato attivo su-
periori a 5 m il permafrost può essere presente (e non necessariamente relitto), ma il BTS può non individuarlo.

FIG. 3 - Esempio di misure BTS in corrispondenze di alcuni rock glaciers (limite nero) e al di fuori tra i 2300 e i 3000 m di quota nelle Alpi Centrali (da Guglielmin & alii, 1994)

Metodi Geofisici

Tutti i metodi geofisici si basano sul concetto che il ghiaccio muta le proprietà elettriche, elettromagnetiche o di propagazione delle onde sismiche rispetto all’acqua e all’aria e quindi può essere individuato facilmente se presente in significative percentuali.

Tali premesse chiariscono che i metodi geofisici sono spesso inapplicabili o difficilmente applicabili su substrati lapidei ed in generale forniscono indicazioni sulla presenza di ghiaccio che non coincide necessariamente con quella del permafrost. Tra i metodi utilizzabili quelli elettrici ed in particolare i sondaggi elettrici verticali e la tomografia elettrica sono sicuramente i più utilizzati.

I profili di resistività verticali danno una sezione geognostica nel punto corrispondente al centro dello stendimento utilizzato. La capacità di risoluzione non è molto alta, soprattutto per profondità elevate. Le configurazioni più utilizzate sono i quadripoli Schlumberger simmetrici o asimmetrici. L’interpretazione geologica dei S.E.V. (Sondaggi Elettrici Verticali) in assenza di riscontri geofisici o geognostici, può essere di doppia oggettività; diversi autori hanno infatti interpretato medesimi valori di resistività con significati glaciologicamente diversi. In particolare valori di resistività inferiori a 10 kΩ m o di poco superiori sono assai critici, in quanto la resistività è molto influenzata dalla temperatura ed attualmente il permafrost alpino è in genere nell’intervallo di temperatura tra –3°C e 0°C. La fig. 4 mostra invece ti-
piche curve in ambiente alpino con permafrost (da Guglielmin & alii, 1994). Negli anni ’80 era anche molto utilizzato la sismica a rifrazione per individuare la tavola del permafrost, ma attualmente dopo i metodi elettrici è il radar il più utilizzato. Il georadar, come la tomografia, offre sezioni trasversali con anche una elevata risoluzione, dove è possibile ben definire la geometria dei corpi di ghiaccio eventualmente presenti. Il problema del radar è la rilevante dispersione di segnale dovuta allo scattering della superficie ed al materiale in genere grossolano superficiale ed alla ridotta profondità di penetrazione. In generale per ottenere buoni risultati si deve ricorrere a profili con antenne a diversa frequenza (50, 100, 200 MHz).

FIG. 4 - Esempi di curve con permafrost e relativa interpretazione elettrica e glaciologica (da Guglielmin & alii, 1994)

Remote sensing

Per quanto riguarda il remote sensing alcuni autori hanno utilizzato immagini TM (Thematic Mapper) per individuare diverse associazioni vegetali alle quali corrispondono diverse condizioni termiche e di drenaggio del suolo tali da assegnare la presenza di permafrost prossimo alla superficie per alcune associazioni vegetali e l’assenza per altre. Attraverso il rilevamento multitemporale di immagini nell’infra rosso termico è stato possibile evidenziare l’in erzia termica dei terreni contenenti ghiaccio o permafrost che risulta di gran lunga maggiore dei terreni privi
(Antoninetti & ali, 1993a). Tale sistema può essere eseguito con termocamere da elicottero o da aereo in quanto la risoluzione spaziale di queste bande è ancora troppo bassa per la maggior parte dei sensori su satellite.
Anche il grado di saturazione dei suoli visibile nell’infrarosso vicino è stato utilizzato per evidenziare quei suoli nudi che, al momento del passaggio del satellite, presentavano un livello di umidità superficiale più elevata. Antoninetti & ali (1993b) hanno evidenziato come le aree con permafrost siano pressoché sempre in queste condizioni. Chiaramente tale metodo non riesce a discriminare tali suoli con quelli saturi per la presenza di corpi idrici affioranti o subaffioranti.

Modelli di distribuzione del permafrost

Infine la determinazione del permafrost attraverso modelli empirici o su modelli basati su processi fisici è estremamente utilizzata.
Tra i modelli empirici quelli basati su regole di carattere geografico (es. quota, esposizione), sulla distribuzione di forme correlate al permafrost in relazione a parametri geomorfologici o su relazioni climatiche o ancora su relazioni tra fattori climatici e BTS sono certamente le più diffuse e meno costose.
A titolo di esempio vengono qui riportati due modelli empirici ed uno fisico:

a) PermaKart (Keller, 1992)
b) PermaMap (Hoelzle, 1992)
c) PermaClim (Guglielmin & ali, 2003)
a) Questo modello empirico si basa su regole di probabilità di presenza del permafrost definite sulla base dell’esperienza dai ricercatori del politecnico e dell’università di Zurigo sul territorio svizzero. Tali regole geografiche tengono in considerazione quota, esposizione e in una certa misura la pendenza.
b) Il modello PermaMap si basa sulla relazione empirica tra radiazione solare incidente potenziale calcolata a partire da un DEM e la Temperatura media dell’aria.
c) Il modello PermaClim invece enfatizza il ruolo del manto nevoso nel bilancio energetico semplificando l’evoluzione temporale dello stesso manto nevoso ed utilizzando pochi dati di input, di relativa facile acquisizione. Il modello infatti calcola la temperatura media annua della superficie del suolo sulla base di soli tre dati di input:
Temperatura dell’aria
Altezza della neve al suolo
Modello Digitale del Terreno
Il modello suppone infatti che in assenza di neve la temperatura superficiale sia eguale a quella dell’aria, mentre qualora la temperatura dell’aria sia negativa l’even-
tuale manto nevoso attenua l’onda termica negativa in funzione delle sue caratteristiche termiche sino ad uno spessore critico, oltre il quale la temperatura all’interfaccia neve-suolo sia pari a quella di fusione. Anche nel caso di temperature positive la temperatura all’interfaccia sarà sempre eguale a 0°C in quanto tutta l’energia viene utilizzata nella fusione della neve presente senza poter cambiare la temperatura.

La neve altresì in ogni caso impedisce anche gli eventuali flussi energetici verso l’atmosfera utilizzando tutta l’energia sempre per fondere la neve presente.

Il modello quindi ricostruisce la neve al suolo e la temperatura dell’aria interpolando i dati disponibili sul DTM considerando sia l’effetto della quota che quello della pendenza e della morfologia del terreno.

Il modello pertanto calcola una temperatura media annua del suolo che viene transformata in classi di probabilità di presenza del permafrost secondo la seguente classificazione:

- TMAS>0°C = Permafrost assente
- 0<TMAS<-2°C = Permafrost possibile
- TMAS<-2°C = Permafrost probabile.

La fig. 5 (da Guglielmin & alii, 2003) mostra il modello Permaclim applicato nella zona del Passo del Foscagno (SO).

FIG. 5 - Esempio di applicazione del modello Permaclim nell’area del Passo del Foscagno (SO) (da Guglielmin & alii, 2003)
IL PERMAFROST COME INDICATORE CLIMATICO

In passato si è cercato di generalizzare e regionalizzare il significato climatico del permafrost partendo dai dati climatici più comuni ossia la temperatura media annua dell’aria (TMAA) e le precipitazioni totali. Tale schematizzazione (Haeberli, 1985) evidenzia come permafrost e glacialismo siano in antitesi e che dal bilancio tra input energetico e input nivale spesso possa dipendere la presenza del permafrost o quella di un ghiacciaio. Questo schema però riporta valori che, alla luce delle conoscenze attuali sono puramente indicativi e, soprattutto nel determinare il bilancio energetico della superficie non sono le precipitazioni totali bensì lo spessore del manto nevoso al suolo. In ambiente montano l’accumulo nevoso può essere molto variabile anche in poche decine di metri in funzione della redistribuzione del manto nevoso dovuta al vento e alla sua interazione dovuta alla rugosità superficiale (primariamente dovuta alla vegetazione o alla granulometria nei terreni nudi). Da tutto questo deriva che è fondamentale monitorare a livello locale l’accumulo nevoso e la temperatura dell’aria e, solo in seconda battuta la radiazione solare per poter interpretare i valori relativi al monitoraggio del permafrost.

Le variazioni del manto nevoso sono particolarmente importanti specie durante l’autunno e la primavera o l’estate. Una copertura nevosa abbondante in autunno infatti può aumentare la temperatura media annua anche di alcuni gradi centigradi perché impedisce il raffreddamento a causa delle temperature negative dell’aria mentre viceversa una abbondante coltre nevosa in primavera può abbassare la temperatura superficiale proteggendo dalla radiazione solare e dalle temperature positive dell’aria (Fig. 6). Inoltre anche le coperture nevose molto sottili (<5 cm) possono essere assai importanti perché solitamente tendono a raffreddare la sottostante superficie significativamente (a causa del forte gradiente termico che si instaura nella copertura nevosa e a causa dell’aumento di albedo; (Keller & Gubler, 1993; Guglielmin, 2004b).
Il monitoraggio del permafrost in ambiente alpino è sostanzialmente un monitoraggio di temperature della superficie, nello strato attivo e nel sottostante permafrost sino alla profondità in cui la variazione annua di temperatura è praticamente trascurabile, detta profondità di oscillazione minima (ZAA = zero annual amplitude). La differenza tra la temperatura media annua della superficie (TMAS, convenzionalmente misurata a 2 cm di profondità, come in Guglielmin 2006; Guglielmin & alii, 2007) e quella misurata in corrispondenza della tavola del permafrost (ossia all’interfaccia tra strato attivo e permafrost) fornisce una idea dell’influenza dello strato attivo sul sottostante permafrost (tale effetto è detto Thermal Offset). Più tale differenza quindi è elevata meno il sito prescelto è idoneo al monitoraggio climatico in quanto significa che i fenomeni di avvezione e convenzione del calore possibili nello strato attivo perturbano la normale conduzione e rendono più difficoltosa la successiva interpretazione e modellazione.

Un’altra precauzione nel monitoraggio è quella di scegliere siti con caratteristiche morfologiche e superficiali omogenee o ben note e monitorate in sito in quanto queste condizioni possono contribuire a forti variazioni laterali sia nello spessore che nel regime termico sia dello strato attivo che del permafrost.
Se invece si vuole ricostruire l’evoluzione paleoclimatica utilizzando il permafrost
due sono le possibili strade da percorrere:
a) ricostruzione delle paleotemperature superficiali attraverso la modellazione in-
versa di un profilo di temperatura a profondità superiori la ZAA (Fig. 7);
b) informazioni delle paleotemperature e talvolta paleoprecipitazioni attraverso lo stu-
dio del ghiaccio preservato nel permafrost (come, ad esempio, in Stenni & alii, 2007).

FIG. 7 - a) Profilo di temperatura del pozzo PACE presso il Monte Livrio (3000 m); b) ricostruzione delle
paleotemperature (da Guglielmin., 2004).
Nel primo caso la risoluzione temporale raggiungibile è assai elevata (annuale) con un’altrettanto elevata accuratezza (se il sito è stato scelto bene ed il profilo è ben eseguito), ma con la possibilità nell’ambito alpino di poter ricostruire solo alcuni secoli o al massimo l’ultimo millennio. Nel secondo caso invece si possono anche qui ottenere risoluzioni temporali annuali con accuratezze più scarse e soprattutto riferite a segmenti temporali più o meno lunghi non sempre databili con precisione.

DISTRIBUZIONE DEL PERMAFROST IN ITALIA ED IN LOMBARDIA

La conoscenza della distribuzione del permafrost in Italia è alquanto incompleta specie riguardo al contenuto e tipologia di ghiaccio in esso preservato e alle condizioni termiche. Al momento infatti soltanto in Alta Valtellina si ha un numero di indagini termiche, geofisiche, geomorfologiche, idrogeologiche e vegetazionali piuttosto abbondanti da consentire una mappatura abbastanza accurata del permafrost e delle sue caratteristiche e di calibrare i modelli di distribuzione applicati. Sempre in Alta Valtellina l’Università dell’Insubria di Varese ha al momento 3 sondaggi subsuperficiali (10-30 m di profondità) ed uno profondo (100,3 m di profondità) monitorati. L’unico altro sondaggio subsuperficia monitorato (sempre dall’Università dell’Insubria di Varese in convenzione con l’Ente Funivia) è localizzato presso Punta Helbronner (Monte Bianco). Esistono poi altri tre punti di monitoraggio dello strato attivo (uno nelle vicinanze di Plateau Rosa (AO) e due nel rock glacier La Foppa (SO).

Al di fuori di queste aree la conoscenza è limitata ad alcuni rock glaciers, specie del Piemonte (Ribolini & Fabre, 2006). Modelli di distribuzione sono stati realizzati per la Lombardia (Guglielmin & Siletto, 2000, fig. 8), per la Valle d’Aosta (Guglielmin, inedito), per il Veneto (Cagnati & ali, 2007) e anche in Alto Adige.
La distribuzione è comunque a macchia di leopardo, molto irregolare persino all’interno dei singoli rock glaciers dai 2000 sino ad oltre 3000 m di quota. A quote più elevate, dove sono assenti i ghiacciai, la presenza è più continua. Localmente corpi isolati si possono rinvenire anche a quote più basse (sino a 1700 m). Lo spessore medio è di circa 20 m, anche se in corrispondenza del sondaggio PACE del Monte Livrio (Passo dello Stelvio) (Guglielmin, 2004) supera i 200 m. Lo strato attivo è assai variabile, anche se in generale è compreso tra 1 e 3 m, e spesso, specie a quote inferiori i 2700 m è compreso tra 3 e 5 m. Tutti i sondaggi monitorati anche solo temporaneamente hanno evidenziato un permafrost con temperature sempre superiori a –3 C° e spesso presentano profili isotermali (temperatura pressoché costante al di sotto della ZAA con temperatura comprese tra -1.5 e 0°C).
CONCLUSIONI

Il permafrost è una componente fondamentale della criosfera ed in un contesto di cambiamento climatico come quello odierno la conoscenza della sua distribuzione areale e verticale è fondamentale per una corretta gestione del territorio montano sempre più importante a livello economico e a livello ambientale per l’intera comunità.

La nuova sfida scientifica, ma fortemente applicativa, è però lo studio dei processi e dei feedback, talora totalmente inattesi, che possibili variazioni del permafrost, conseguentemente al cambiamento climatico, possono innescare negli ecosistemi montani ed in particolare nella vegetazione, nella circolazione idrogeologica dei territori di alta montagna e nella stabilità dei versanti.

BIBLIOGRAFIA

KELLER F. (1992) - Automated mapping of mountain permafrost using the program PERMAKART within the geographical information system ARC/INFO. Permafrost and Periglacial Processes, 3, 133-138.

GUGLIELMINA DIOLAIUTI (*), CLAUDIO SMIRAGLIA (*)
GIANPIETRO VERZA, (**), ROBERTO CHILLEMI (***), &
ERALDO MERALDI (****)

LA RETE MICRO-METEOROLOGICA GLACIALE LOMBARDA:
UN CONTRIBUTO ALLA CONOSCENZA DEI GHIACCIAI ALPINI E
DELLLE LORO VARIAZIONI RECENTI

Riassunto: DIOLAIUTI G., SMIRAGLIA C., VERZA GP., CHILLEMI R. & MERALDI E.,
La rete micro-meteorologica glaciale lombarda: un contributo alla conoscenza dei
ghiacciai alpini e delle loro variazioni recenti.

Le ricerche sulle condizioni meteorologiche dominanti alla superficie dei ghiacciai
alpini in Italia sono iniziate solo da tre anni grazie a studi pilota condotti nelle aree
glacializzate lombarde. Attraverso l’installazione di tre stazioni meteorologiche automatiche (Automatic
Weather Station o AWS) sulla superficie di ablazione di tre ghiacciai lombardi rappresentativi è stato possibile quantificare le condizioni termiche ed i flussi energetici alla superficie glaciale. Sono anche stati investigati dimensioni e caratteristiche dell’atmospheric boundary layer sopragliaciale ed è stata evidenziata l’esistenza di venti catabatici confrontabili, sebbene a scala minore, con quelli che spirano sulle grandi calotte glaciali antartiche e groenlandesi. Nel presente contributo viene presentata una selezione di dati raccolti esemplificativa delle condizioni meteorologiche sopragliaciali.

(*) Università degli Studi di Milano, Dipartimento di Scienze della Terra “A. Desio”, Comitato Glaciologico Italiano
guglielmina.diolaiuti@unimi.it
(**) Comitato Ev-K2-CNR, Bergamo
(***) Club Alpino Italiano
(****) Guida Alpina Regione Lombardia

L’installazione delle stazioni sopragliaciali lombarde e i progetti di ricerca nel quale esse si inseriscono sono stati sostenuti da diversi enti pubblici e privati (San Pellegrino Levissima, Fondazione Cariplo, Comitato Ev-K2-CNR, AEM Spa, Arpa Lombardia, Lsi-LASTEM) e dall’attività di numerosi volontari (soci del Club Alpino Italiano, membri del Corpo Nazionale del Soccorso Alpino e Speleologico del Club Alpino Italiano-stazione di Valfurva, studenti dell’Università degli Studi di Milano e del Politecnico di Milano). Gli autori ringraziano i comuni di Valfurva e di Valdidentro, la Provincia di Sondrio, il Comitato di gestione Lombardo del Parco Nazionale dello Stelvio ed il Parco Naturale dell’Adamello per la collaborazione fornita alle ricerche micro-meteorologiche.

The Italian scientific research dealing with Alpine glacier meteorology started three years ago when in Lombardy some pilot experiments have been carried out. Three Automatic Weather Stations (AWSs) have been set up on the melting surface of three representative alpine glaciers (all located in Lombardy). The AWS were equipped with several different sensors to collect the main atmospheric parameters (air temperature, energy fluxes, air pressure, wind speed and direction, humidity, snow and liquid precipitations) for describing the glacier boundary layer. Thanks to the collected data it was also possible to find and to describe the glacier katabatic winds which, before these findings, were thought to flow only over Antarctica and larger glaciers. In the present contribution a collection of glacier meteo-data is shown to describe alpine glacier micro-meteorology.
I grandi sistemi orografici coprono solo il 25% della superficie dei continenti (Kapos & alii, 2000). Solo il 26% della popolazione mondiale è insediata in regioni montane o ai piedi delle montagne (Meybeck & alii, 2001), tuttavia le risorse indirettamente provenienti dalle zone elevate offrono sostentamento ad oltre la metà di questa popolazione. Il 40% della popolazione mondiale, inoltre, vive in bacini fluviali le cui acque traggono origine dalle varie catene montuose della Terra. Sebbene le montagne differiscano sensibilmente da una regione all’altra, la complessità dell’orografia costituisce una loro caratteristica comune. Fra le caratteristiche orografiche più importanti va sottolineato l’elevato gradiente altimetrico non riscontrabile in altre regioni dei continenti. Questo determina rapide e sistematiche variazioni dei parametri climatici in funzione della quota, in particolare temperatura e precipitazioni, che cambiano su brevissime distanze (Becker & Bugmann, 1997). Queste variazioni a loro volta determinano rapide variazioni dei caratteri idrologici e vegetazionali in funzione della quota (Whiteman, 2000). Ne deriva, quindi, che la montagna offre un’elevata geo e bio diversità, spesso con rapide transizioni da aree di bassopiano a paesaggi glaciali e periglaciali. Va anche aggiunto che i sistemi montani sono spesso endemici (Hedberg, 1964). Poiché è il clima in montagna ad esercitare un controllo fondamentale su molti sistemi biologici, fisici e chimici, diviene di notevole interesse verificare in queste aree gli effetti indotti dai cambiamenti climatici (Beniston, 2003). Dalla conferenza UNCED (United Nations Environment and Development Conference) di Rio de Janeiro del giugno 1992 (UNCED, 1992), le aree di montagna sono state incluse fra i sistemi ambientali più sensibili ai cambiamenti climatici, tanto che il Capitolo 13 dell’Agenda 21 sottolinea l’importanza delle montagne nel sistema ambientale globale, nonché la generale tendenza negativa della qualità dell’ambiente in molte aree di montagna. A questo proposito le Alpi per la loro localizzazione e morfologia rivestono un particolare interesse per molti studi climatici e ambientali; si tratta infatti di un “incrocio climatico” nel cuore dell’Europa, dove si sommano influenze oceaniche, continentali, polari, mediterranee e talora sahariane. Va anche aggiunto che le variazioni termiche sulle Alpi sono molto più marcate sia a scala globale che emisferica. L’incremento termico verificatosi sulle Alpi sin dall’inizio degli anni ’80 del XX secolo, pur essendo sincrono con il riscaldamento globale, è di tre volte amplificato rispetto al segnale climatico globale (Diaz & Bradley, 1997). Secondo Beniston (2000), il cambiamento climatico nella regione alpina è stato caratterizzato durante il XX secolo da un incremento di oltre 2°C delle temperature minime, da un più lieve incremento delle massime (con l’eccezione dell’improvvisa onda di calore che
nel 2003 ha colpito gran parte dell’Europa Occidentale e Centrale) e da una tendenza poco identificabile delle precipitazioni.

I GHIACCIAI: INDICATORI DEI CAMBIAMENTI CLIMATICI IN ATTO SULLA CATENA ALPINA

L’importanza della criosfera alpina a livello ambientale (ad esempio idrologia e vegetazione) ed economico (ad esempio turismo e gestione delle acque) è stata sottolineata in numerosi studi (inter alia, Haeberli & Beniston, 1998; Beniston, 2000). La quantificazione dell’entità di neve e ghiaccio nelle regioni montane e delle loro variazioni derivanti dall’incremento termico è basilare per valutare il volume di acqua che defluirà in primavera e nella prima estate nei numerosi sistemi fluviali che si originano dalle Alpi. Le Alpi sono infatti state definite “la torre d’acqua d’Europa” (Mountain Agenda, 2001). Ogni variazione sostanziale nella quantità di neve e nella copertura glaciale potrebbe avere un notevole impatto sui grandi bacini fluviali, non solo per le variazioni delle portate, ma anche per il potenziale incremento di esondazioni, erosione e dei rischi associati (Beniston, 2006). La principale motivazione di questo fenomeno risiede nel fatto che la maggior parte dei ghiacciai alpini ha una temperatura superficiale prossima al punto di fusione; ne consegue che anche un lieve incremento termico in montagna può avere un notevole impatto negativo sui ghiacciai (Haeberli, 1995). Haeberli (1985) valuta che dal 1850 i ghiacciai delle Alpi abbiano perso a causa del cambiamento climatico il 40% della superficie ed oltre il 50% del volume. Per quanto riguarda l’Italia il Catasto dei Ghiacciai Italiani del 1961 (CNR-CGI, 1961) elenca 838 apparati, di cui 745 inventariati come “glaciers” e 93 come glacionevati o “glacierets” (sensu WGMS in IUGG-UNEP-UNESCO, 2005).

Il Catasto del 1989 riporta 807 apparati, 706 inventariati come “ghiacciai” e 101 come “glacionevati” (Biancotti & Motta, 2000), segnalando quindi una perdita di 31 apparati in 28 anni con un incremento del numero dei glacionevati che sottolinea ulteriormente la degradazione glaciale (il glacionevato rappresenta infatti lo stadio finale di un ghiacciaio prima della sua estinzione). La superficie totale dei ghiacciai italiani si è ridotta da 525 km² nel 1961 a 482 km² nel 1989, (-43 km², equivalenti a -1.5 km²/anno).

Se si confrontano i dati sulle fluttuazioni dei ghiacciai italiani (una sintesi è riportata in Citterio & alii., 2007a) con le serie di dati di temperature, ad esempio quelle del progetto ALPCLIM (Böhm & alii, 2001), si osserva che l’intero XX secolo è caratterizzato da un incremento termico che ha raggiunto un massimo verso il 1950 e un secondo negli anni ’90 (quest’ultimo raggiunge un valore mai registrato nei 240

COME RILEVARE I CAMBIAMENTI CLIMATICI IN ATTO SULLE ALPI

Oltre al monitoraggio delle masse glaciali, che rappresentano senza dubbio i più attendibili indicatori dei cambiamenti climatici in atto, è necessario acquisire dati meteorologici in siti rappresentativi dell’alta montagna alpina per periodi lunghi attraverso un’adeguata strumentazione scientifica (in accordo agli standard qualitativi suggeriti dall’Organizzazione Meteorologica Mondiale). Solo l’analisi di dati raccolti in alta quota, infatti, può permettere di rilevare e quantificare le evidenze delle variazioni climatiche che qui si manifestano. Gli stessi dati, inoltre, qualora rilevati in aree non solo di elevata altitudine ma anche glacializzati, possono permettere la calibrazione e validazione di modelli analitici per il calcolo dei bilanci energetici e di massa glaciali (Oerlemans, 2005).

LA MICROMETEOROLOGIA SOPRAGLACIALE

La superficie di un ghiacciaio differisce dalle zone circostanti e questa differenza è meno evidente in inverno a causa della neve che ricopre sia la superficie del ghiacciaio che i versanti delle montagne circostanti. Diversamente, durante i mesi estivi le differenze sono più marcate: la copertura nevosa non è più omogenea e mentre il ghiaccio del ghiacciaio nei settori inferiori è esposto ai processi di ablation, nelle aree superiori esso è spesso coperto da neve e nevato (che con un’albedo elevata riflettono buona parte della radiazione solare); le aree rocciose esterne al ghiacciaio sono invece per buona parte dell’estate prive di copertura nevosa ed assor-
bano efficacemente la radiazione solare. Il bilancio energetico di queste zone e di conseguenza la temperatura dell’aria saranno quindi profondamente diversi da quelli dell’atmosfera a contatto ed al di sopra del ghiacciaio. È di fondamentale importanza, per calcolare il bilancio energetico di un ghiacciaio, quantificare gli scambi di energia e di massa a livello dell’atmospheric boundary layer (i.e.: lo strato limite atmosferico, ovvero quello strato di atmosfera immediatamente al di sopra -si estende per pochi metri- della superficie terrestre dove avvengono scambi di massa e di energia tra i due sistemi- la superficie terrestre e l’atmosfera), scambi che non possono essere stimati sulla superficie del ghiacciaio senza delle misure dirette. Per questi motivi, è indispensabile possedere misure dirette dei parametri meteorologici alla superficie del ghiacciaio. Le ricerche sul bilancio energetico glaciale hanno avuto inizio dopo la Seconda Guerra Mondiale, i primi lavori furono svolti da Ambach (1963), a cui seguì una serie di altre ricerche (e.g. Björnsson, 1972; Hogg & alii, 1982; Ishikawa & alii, 1992) che hanno fornito le basi dell’attuale conoscenza sul bilancio energetico superficiale di un ghiacciaio. Serie di dati estese temporalmente per decenni o più sono state ottenute applicando il gradiente altitudinale (i.e.: lapse rate) ai parametri meteorologici; ovviamente in questo caso i dati di partenza erano misurati a valle e semplicemente traslati alla quota del ghiacciaio. Negli ultimi anni, sono stati realizzati esperimenti glacio-meteorologici misurando gli elementi del flusso energetico superficiale contemporaneamente in molte stazioni sopraglaciali (Oerlemans & Vugts, 1993; Greuell & alii, 1997; Oerlemans & alii, 2004). Questi ultimi studi hanno fornito dati meteorologici sopraglaciali e misure di terreno dei flussi solari sebbene per periodi limitati (una o più estati). Questi risultati hanno sicuramente aumentato le nostre conoscenze sulla micrometeorologia glaciale, ma sono necessarie serie di dati più lunghi, che possono essere ottenute solo dalle stazioni meteorologiche permanenti (Automatic Weather Station o AWS) situate sulla superficie di ghiacciai. La maggior parte delle AWS sopraglaciali sono situate su zone d’accumulo, principalmente a causa di una più alta stabilità di questi settori del ghiacciaio; meno numerose sono invece quelle localizzate in zone d’abazione. Il motivo di questa diversa distribuzione è prima di tutto l’elevato tasso d’abazione che riduce la stabilità delle AWS durante la stagione estiva. Inoltre, le morfologie sopraglaciali e i crepacci che caratterizzano le aree d’abazione, variano ampiamente durante la stagione estiva rendendo più complesse le operazioni di manutenzione delle stazioni ubicate in quest’area. Solo recentemente (dopo il 1987) ha avuto inizio un programma di ricerca ad opera dell’Institute for Marine and Atmospheric Research of Utrecht University (IMAU) che ha previsto l’installazione di stazioni meteorologiche automatiche permanenti in area di abazione glaciale. Le AWS preparate per questo programma sono sorrette da un quadripode metal-
lico con sostegni mobili appoggiato direttamente sulla superficie del ghiacciaio. Le quattro estremità del quadripode terminano con un piccolo pattino che poggia sul ghiaccio di ghiacciaio e riscaldandosi a seguito dell’insolazione penetra per qualche centimetro all’interno dello stesso assicurando la stabilità alla stazione. Questo tipo di costruzione ha permesso l’installazione delle AWS finalizzate alla raccolta di dati per tutto l’anno delle zone d’ablazione della calotta groenlandese, del Ghiacciaio dell’Hardangerjokulen (Norvegia) e del Morteratschgletscher (Svizzera) (Oerlemans & alii, 2004) La serie di dati migliori è stata ottenuto da quest’ultima stazione grazie alla possibilità di visitarla con regolarità ed alle condizioni atmosferiche favorevoli (i.e.: ridotto o quasi nullo congelamento di vapore acqueo e neve fusa che altrove provocano lentì di ghiaccio sui sensori) (Oerlemans, 2001). La AWS ubicata sul Morteratschgletscher è servita come esempio prezioso per l’installazione della prima AWS permanente in un’area d’ablazione di un ghiacciaio sulle Alpi Italiane e di fondamentale importanza sono stati i consigli e le raccomandazioni fornite da parte dei ricercatori dell’IMAU.
LA RETE DI MONITORAGGIO ITALIANA

Nonostante la lunga tradizione in campo glaciologico presente sulle Alpi Italiane – con le prime misure della variazione della lunghezza e del bilancio di massa iniziati rispettivamente nel 1895 (Ghiacciaio dei Forni, Lombardia) e nel 1967 (Ghiacciaio del Careser, Trentino) (Smiraglia, 2003) – dati meteorologici e flussi solari misurati direttamente alla superficie d'ablazione di un ghiacciaio in Italia non sono stati disponibili fino all’installazione della prima AWS permanente, collocata sul Ghiacciaio dei Forni (Alta Valtellina, Alpi Lombarde) il 26 Settembre 2005 (Fig. 1).

Prima di quella data, tutte le altre AWS italiane in alta quota erano localizzate su rocce emergenti ("isole perse" o nunatak) o sopra i tetti di rifugi e bivacchi di alta quota. Mentre i dati di queste altre AWS possono essere interessanti per lo studio delle condizioni meteorologiche d’alta montagna, non sono parimenti utili per le ricerche sulla micrometeorologia sopraglaciale. Vanno in ogni caso ricordate le AWS installate temporaneamente in bacini di accumulo glaciale, come quella del Colle Vincent sul Monte Rosa collocata nell’ambito di un progetto ENEL-Comitato Glaciologico Italiano che funzionò dal 1991 al 1994 e dell’Adamello (Pian di Neve,
gruppo di ricerca dell’Università di Brescia).
Dal 2005, anno di installazione della stazione meteorologica sopraglaciale dei Forni, è iniziato un progetto a cura dei ricercatori dell’Università degli Studi di Milano per l’allestimento di una vera e propria rete di monitoraggio meteorologico in quota sui più rappresentativi ghiacciai alpini italiani.

LE STAZIONI SOPRAGLICIALI LOMBARDE

La rete di monitoraggio micro-meteorologica sopraglaciale lombarda è costituita dalla stazione ubicata sul Ghiacciaio dei Forni, da quella localizzata sul Ghiacciaio del Dosdè Orientale e da quella installata sul Ghiacciaio Venerocolo (gruppo dell’Adamello) (Fig. 2).

FIG. 2 - Le stazioni meteorologiche sopraglaciali del Ghiacciaio Venerocolo (2850 m, gruppo dell’Adamello) a sinistra e del Ghiacciaio Dosdè Orientale (2740 m, gruppo Piazzi-Campo, alta Valtellina) a destra.
La stazione ubicata sul Ghiacciaio dei Forni, la prima AWS sopragliaciale italiana, è quella che ad oggi ha permesso di raccogliere il maggior numero di dati e di conoscere le condizioni micro-meteorologiche alla superficie di un ghiacciaio alpino italiano. Il Ghiacciaio dei Forni è il più grande apparato vallivo italiano (circa 12 km\(^2\) di superficie, ubicato nel gruppo Ortles-Cevedale, Parco Nazionale dello Stelvio). Il ghiacciaio è esposto a nord e si estende in un intervallo altitudinale compreso fra i 2600 m e i 3670 m.

Le coordinate WGS84 della AWS (denominata AWS1 Forni), collocata sulla lingua di ablaizione alla base della seraccata orientale, sono le seguenti: 46° 23' 56.0'' N, 10° 35' 25.2'' E, 2669 m (elevazione ellissoidica). Questo sito rappresenta un buon compromesso fra la necessità di minimizzare gli effetti della topografia locale e la ricerca di un luogo con bassa probabilità di eventi valanghivi che potrebbero distruggere la stazione. La stazione è localizzata nel settore più basso del ghiacciaio, a circa 800 m dalla fronte glaciale, e le montagne circostanti arrivano ad un’altezza di 3200-3700 m (il più alto è il Palon della Mare, 3703 m, seguito dal Monte San Matteo 3678 m), favorendo condizioni di ombra soprattutto sui settori meridionali e orientali del ghiacciaio. Sfortunatamente, non è stato possibile installare, nel sito scelto, nessun collegamento via modem GSM (Global System for Mobile communications) per la gestione e lo scarico dei dati a distanza, a causa dell’altezza dei picchi montuosi circostanti che schermano il segnale.

La AWS (compresi hardware ed equipaggiamento) è stata trasportata per l’installazione tramite elicottero il 26 Settembre 2005 e la sistemazione è stata completata lo stesso giorno. Durante i mesi seguenti, la AWS è stata controllata frequentemente per verificare l’operatività e la stabilità e fortunatamente non è emerso alcun problema. L’installazione è stata possibile grazie e con il supporto di Comitato EV-K2-CNR, AEM spa, Arpa Lombardia, Soccorso Alpino e CAI sezioni di Bormio e di Valfurva. La AWS1 Forni è equipaggiata con un data logger a 20 canali (Babuc ABC) della LSI-Lastem, ed è omologa alle stazioni correntemente in uso in alta quota nella rete di monitoraggio himalayana di Ev-K2-CNR, che include la AWS al CNR Pyramid Laboratory italiano a 5050 m nell’area del Monte Everest. La AWS1 Forni (data logger e sensori) è stata testata prima della sua installazione sul Ghiacciaio dei Forni ubicandola per due mesi al Campo Base del K2, a 5033 m, sulla superficie del Ghiacciaio Baltoro (Karakorum, Pakistan), durante una campagna di ricerca organizzata nell’estate 2004 per celebrare il cinquantenario della prima ascensione al K2 (Mihalcea & alii, 2006; Mayer & alii, 2006). Al rientro da questa spedizione la stazione ha visto la ricalibrazione di tutti i sensori ed è stata quindi portata sul Ghiacciaio dei Forni.

La AWS è fornita di sensori per misurare la temperatura dell’aria, l’umidità relativa, la velocità e la direzione del vento, la pressione atmosferica, la radiazione solare in en-
trata ed in uscita in un range dello spettro di 0.3 - 3 \(\mu m \) e la radiazione ad infrarossi in un intervallo di 5 - 50 \(\mu m \) proveniente dall’atmosfera e dalla superficie del ghiacciaio (dati rilevati tramite quattro elementi del radiometro netto Kipp & Zonen, CNR-1).

Sono stati anche installati un pluviometro (dimensioni di 1000 cm\(^2\)) e un nivometro ad ultrasuoni (sonic ranger Campbell SR-50) per misurare il livello, rispettivamente, della pioggia e della neve. Allo scopo di permettere la connessione del sonic ranger SR-50 al data logger Babuc ABC e di acquisire letture digitali del livello della neve, è stata ideata e costruita un’interfaccia digitale adatta ad operare in condizioni di bassa temperatura.

L’alimentazione della stazione è fornita da due pannelli solari (40 W di potenza nominale combinata) che tamponano una batteria di 100 Ah e 12 V; il livello di carica della batteria è registrato dal data logger per permettere una verifica nella fase di scarico dei dati. La batteria ed i pannelli che la ricaricano sono stati scelti per permettere un’autonomia della stazione, anche in assenza di insolazione diretta (come può avvenire in inverno quando i pannelli sono coperti da neve), di almeno due mesi. I venti canali del data logger sono inoltre utilizzati solo per metà e quindi vi sono numerosi canali liberi per implementare la stazione, in futuro, con altri sensori (per esempio per misurare la temperatura della neve e/o del ghiaccio a diverse profondità) o per collegarla con un modem GSM qualora la copertura e l’intensità del segnale GSM lo permettano.

L’immagazzinamento dei dati avviene in una scheda di memoria veloce di 2 Mbyte capace di immagazzinare oltre 6 mesi di registrazioni. L’intero sistema è sostenuto da un quadrupode metallico, in acciaio inossidabile alto 5 m dalla superficie del ghiaccio, simile a quelli proposti e testati dall’IMAU (Oerlemans, 2001).

Le osservazioni e i dati provenienti dalla stazione Forni AWS1, dopo essere valutati, saranno utilizzati non solo per ricerche sul microclima sopraglaciale ma anche per l’allestimento di modelli del bilancio energetico della superficie di un ghiacciaio, per integrazione con i dati derivanti da passati rilevamenti (in particolare le stime dell’albedo) e per confronti con i dati nivologici raccolti presso trincee. I primi risultati sono stati pubblicati in Citterio & ali (2007b).

Nell’estate 2007 è stata collocata sul Ghiacciaio Dosdè Orientale (Alta Valtellina, Gruppo di Cima Piazzi) una nuova stazione meteorologica automatica (AWS) che fornirà dati importanti sull’evoluzione dell’ambiente di alta montagna. La collocazione della stazione Dosdè (la più alta AWS permanente lombarda su ghiacciaio, 2740 m) si inserisce in un progetto scientifico sostenuto da San Pellegrino-Levissima e finalizzato alla conoscenza delle perdite idriche causate dalla fusione glaciale e alla formulazione di concrete proposte di mitigazione di questo fenomeno. Sono quindi previsti, e in parte già realizzati, rilievi di bilancio di massa glaciale e di bilancio energetico, insieme alla sperimentazione, per la prima volta in Italia, di pro-
procedure di riduzione della fusione mediante il posizionamento di una parcella di geotessile. Sempre nell’estate 2007 è stata collocata, nell’ambito del progetto CARIPANDA (CAmbiamento climatico e Risorse Idriche nel Parco Naturale Dell’Adamello) finanziato dalla Fondazione CARIPLO anche la AWS Venerocolo, localizzata sul Ghiacciaio del Venerocolo (gruppo dell’Adamello).

Le caratteristiche strumentali delle AWS localizzate sui ghiacciai Dosdè e Venerocolo sono analoghe a quelle della AWS Forni.

Tutte e tre le stazioni sono collocate in area di ablazione glaciale per misurare le condizioni termiche ed i flussi energetici entranti ed uscenti che governano le perdite di massa dei tre ghiacciai. Le principali differenze tra le tre stazioni sono da ricondurre alla diverse condizioni superficiali caratterizzanti le tre aree di ablazione glaciale e al differente intervallo temporale di permanenza delle stazioni sui tre ghiacciai. Per quanto riguarda le condizioni superficiali, mentre sia il Ghiacciaio dei Forni che il Dosdè orientale sono apparati prevalentemente privi di copertura detritica superficiale (fatta eccezione per le morene mediane o galleggianti, entrambi i ghiacciai sono classificabili come debris free glaciers), il Ghiacciaio del Venerocolo è l’unico apparato lombardo classificato come debris covered glacier (ovvero un apparato glaciale con la maggior parte dell’area di ablazione ricoperta da detriti in spessori variabili da pochi cm a qualche metro). La copertura superficiale influenza notevolmente l’intensità dei flussi energetici riflessi ed emessi dalla superficie glaciale e di conseguenza il bilancio energetico superficiale. Oltre alla diverse condizioni di superficie le stazioni differiscono anche per la differente persistenza sul territorio: mentre le stazioni sui ghiacciai Forni e Dosdè, sebbene siano semplicemente appoggiate alla superficie glaciale e non vincolate in alcun modo alla stessa, sono in funzione senza interruzione dal momento dell’installazione ad oggi (rispettivamente 3 ed 1 anno di funzionamento), la stazione del Venerocolo ha un funzionamento esclusivamente stagionale e limitato al periodo di ablazione.

LE CONDIZIONI MICROMETEOROLOGICHE SUPERFICIALI DI UN GHIACCIAIO ALPINO

L’analisi dei dati meteorologici registrati dalle stazioni Forni e Dosdè permette di descrivere le peculiari caratteristiche dell’atmospheric boundary layer alla superficie di un ghiacciaio alpino. La fig. 3 riporta i dati di radiazione globale in entrata registrata durante la prima primavera di attività dalla stazione AWS Forni.

Nel grafico riportato in fig. 3 i dati evidenziano che il 18 aprile 2006 vi era una consistente copertura nuvolosa, mentre il 20 aprile erano presenti solo poche nubi e negli altri giorni lo stato del cielo è stato variabile. Durante le giornate di cielo terso
e/o con poche nubi le riflessioni multiple della radiazione incidente conseguenti alla neve e al ghiaccio presente sui versanti montani e sulla superficie del ghiacciaio, fanno sì che i valori radiativi in entrata raggiungano picchi così elevati da essere confrontabili con l’intensità della radiazione solare al limite superiore dell’atmosfera terrestre (valore della costante solare).

FIG. 3 - Dati di radiazione globale registrata dalla AWS Forni nella prima primavera di attività (aprile 2006). La linea trattegiata è stata utilizzata per indicare il valore teorico della radiazione extra-terrestre (ovvero che si registra al limite superiore dell’atmosfera) a questa latitudine.

In fig. 4 è invece stato riportato un anno di dati medi radiativi registrati alla AWS1 Forni. Per l’elevato ombreggiamento conseguente ai versanti montuosi incassanti il ghiacciaio il valore medio annuo di radiazione globale è pari a meno della metà del corrispondente valore di radiazione extra-terrestre. Il grafico permette inoltre di apprezzare una notevole variabilità giornaliera nella radiazione globale da attribuire alla elevata frequenza con cui cambiano le condizioni di copertura nuvolosa. Se si mediano i dati radiativi globali registrati tra il 1 aprile 2006 ed il primo ottobre 2006 il valore ottenuto è pari a 212 W m⁻² contro i c. 295 W m⁻² stimati per la radiazione globale in condizioni di cielo terso (clear sky conditions). La riduzione della radiazione globale conseguente alla presenza di nubi è quindi quantificabile in c. il 28%.
Sulla superficie di un ghiacciaio la radiazione solare costituisce sicuramente il maggiore contributo ai flussi energetici superficiali che governano i processi ablativi. Per questo motivo la quantificazione dell’albedo o riflettività superficiale è un punto cruciale per il calcolo del bilancio energetico superficiale e delle conseguenti variazioni glaciali. L’albedo dipende in modo non lineare dalla struttura dei cristalli, dalla morfologia superficiale, dalla presenza di polvere e impurità, di materiale morrenico, dalla presenza di acqua allo stato liquido sia a livello superficiale che incanalato (in ruscelli detti bédières o in piccole vene che solcano la superficie glaciale), dall’angolo zenitale solare, dalla copertura nuvolosa. Oltre a tutto ciò va anche detto che la variabilità spaziale e temporale dell’albedo è assai ampia. Questo è particolarmente evidente quando si percorre a piedi un ghiacciaio ma è altrettanto evidente anche da lontano, per esempio osservando immagini satellitari di ghiacciai ad una risoluzione sufficientemente alta. L’albedo se quantificata da immagini satellitari può coprire un’elevata variabilità spaziale (i.e.: si può analizzare l’intero ghiacciaio dal bacino di accumulo alla fronte) ma ha altresì il grande limite di essere relativa al singolo istante in cui l’immagine è stata acquisita e nelle zone di ombra l’immagine satellitare è pressoché inutilizzabile per quantificare l’albedo (Klok & alii, 2003). Per conoscere con un’elevata risoluzione temporale l’albedo di una superficie glaciale e le sue variazioni diurne e stagionali l’unico modo è utilizzare un radiometro netto come quello installato sulla stazione dei Forni o su quella del Dosdè. Per avere un’idea della variabilità annuale della albedo nell’area di ablazione di un ghiacciaio si faccia riferimento alla fig. 5 dove in un grafico a dispersione sono stati
riportati i valori di radiazione ad onda corta sia incidente che riflessa registrati dalla AWS Forni durante il primo anno di attività. Sull’asse delle ordinate (y) sono riportati i valori di radiazione riflessa mentre su quello delle ascisse (x) i valori di radiazione in entrata. Le due rette interpolanti le due nubi di punti, entrambe passanti per l’origine (poiché a radiazione solare entrante nulla -di notte- corrisponde radiazione ad onda corta uscente nulla) hanno coefficiente angolare ($\alpha=y/x$) pari all’albedo superficiale media verificatasi nel periodo di analisi. I punti risultano allineati in accordo al valore di albedo media per la neve (valore invernale, $\alpha \sim 0.7$) e di quella media del ghiaccio glaciale (valore estivo, $\alpha \sim 0.3$). Alcuni punti risultano outline, ovvero con valore riflesso maggiore di quello incidente e sono tipici dei momenti di forte nevicata quando per qualche ora il cupolino del piranometro superiore (il sensore del radiometro netto che registra appunto la radiazione solare incidente) viene oscurato dall’accumulo della neve precipitata. Nel corso di qualche ora questa neve viene asportata dal vento o fonde lasciando di nuovo esposto alla radiazione lo strumento ed i dati riprendono ad essere correttamente registrati. L’albedo annua durante il primo anno di attività della stazione AWS1 Forni è risultata pari a 0.417 (il valore medio annuo è 0.458). Si può quindi affermare che sul Ghiacciaio dei Forni circa la metà della radiazione globale è attualmente assorbita dalla superficie. Se consideriamo che la radiazione globale è circa il 50% della radiazione extra-terrestre possiamo concludere che solo il 21% della radiazione solare disponibile al limite superiore dell’atmosfera è assorbita dalla superficie del Ghiacciaio dei Forni.

Fig. 5- Un anno di dati radiativi ad onda corta uscenti (y) ed entranti (x) registrati alla AWS1 Forni dai due piranometri di cui è dotato il radiometro netto CNR1. I punti risultano allineati secondo i due caratteristici valori di albedo, quello invernale conseguente alla presenza di neve (~0.7) e quello estivo dovuto al ghiaccio glaciale esteso (~0.3).
Le temperature dell’aria medie, minime e massime registrate durante il primo anno di attività della AWS1 Forni sono state riportate nel grafico di fig. 6. Osservandolo si apprezza una rapida caduta delle temperature dopo la metà di novembre 2005. I due minimi estremi sono stati misurati alla fine di Dicembre 2005 (-25.39°C) e il 13 Marzo 2006 (-27°C). Temperature rigide avvenute più volte e per lunghi periodi hanno anche rappresentato un buon test per verificare la funzionalità della stazione e dei sensori nell’inospitale ambiente glaciale. Se si confrontano i dati termici con quelli radiativi si può anche notare che il cambio abrupto delle temperature avvenuto in novembre 2005 coincide con la netta diminuzione nella radiazione solare in entrata conseguente al modificarsi stagionale di durata ed inclinazione dei raggi solari ed amplificata dalle condizioni di copertura nuvolosa.

FIG. 6 - Il primo anno di dati termici (massime, medie e minime giornaliere) registrati alla stazione AWS1 Forni

Gli effetti delle diverse condizioni superficiali glaciali (i.e.: presenza o meno di detrito sopraglaciaire) sul bilancio energetico e sulla temperatura dell’aria sono meglio apprezzabili se si confrontano i grafici di escursione termica diurna (calcolata come differenza tra la temperature minima e massime diurne assolute) ottenuti con i dati registrati durante la stagione estiva 2007 da tutte e tre le stazioni sopraglaciali lombarde (Fig. 7).
Dal confronto si evince che mentre le temperature dell’aria sul Ghiacciaio dei Forni e su quello del Dosdè non hanno mai registrato variazioni diurne superiori a 1.5°C (sia di giorno che di notte la superficie di un ghiacciaio temperato in estate è costantemente alla temperatura di fusione ovvero 0°C, a scala giornaliera le variazioni di albedo e quindi di energia assorbita sono minime e quindi questo comporta variazioni termiche assai limitate), la temperatura dell’aria alla superficie di un ghiacciaio coperto di detrito (o “nero” nell’accezione italiana o debris covered glacier come il Venerocolo) mostra variazioni assai più intense che in taluni casi superano anche i 10°C.

Queste variazioni sono senza dubbio da attribuire alla presenza del detrito superficiale che si riscalda molto intensamente di giorno a seguito della radiazione solare (la roccia ha infatti un albedo assai inferiore rispetto al ghiaccio) e si raffredda rapidamente di notte. Queste brusche variazioni di temperatura si concretizzano in intense variazioni di radiazione ad onda lunga emessa e in altrettanto intense variazioni della temperatura dell’aria.

Per quanto concerne gli effetti delle nubi sul bilancio radiativo ad onda corta (solare incidente e riflessa) e ad onda lunga (atmosferica e terrestre), questi sono di segno opposto. Più nubi implicano, infatti, una minore quantità di radiazione ad onda corta entrante ed una maggiore quantità di radiazione ad onda lunga atmosferica. L’effetto netto dipende in gran parte dall’albedo della superficie analizzata.
e dalla trasmissività della copertura nuvolosa (Bintanja & Van den Broeke, 1996; Oerlemans, 2005). Nei casi di elevata albedo superficiale (e.g. come si verifica ad esempio dopo una nevicata) la variazione netta di radiazione ad onda lunga per un dato incremento di copertura nuvolosa è maggiore del cambiamento netto di radiazione solare incidente. Diversamente nei casi di minore albedo superficiale (e.g. come si verifica quando la superficie glaciale espone ghiaccio vivo) l’effetto di diminuzione della radiazione solare è dominante e quindi il bilancio energetico radiativo diminuisce all’aumentare della copertura nuvolosa.

FIG. 8 - Un anno di dati di direzione del vento rilevati ad intervalli di ½ ora presso la AWS1 Forni. I dati mostrano che vi è una direzione preferenziale del vento (esso spira in genere verso valle e proviene da SE). Questa direzione coincide con quella di immersione del ghiacciaio (glacier fall line) e suggerisce che il più delle volte si tratti di un vento di tipo catabatico.

La situazione evidenziata dai venti registrati alla stazione AWS 1 Forni è quella tipica di un’area di ablazione glaciale debris free e/o di area ubicate ad elevate latitudini (Antartide) dove lo strato limite atmosferico non mostra un evidente ciclo giornaliero e dove i flussi catabatici possono venire considerati come flussi dello stesso strato limite atmosferico (si veda lo schizzo riportato in fig. 8). Qui l’attrito superficiale e il flusso turbolento di calore sensibile sono importanti componenti del momentum e del bilancio energetico (Oerlemans, 2005). Nel periodo estivo sulla superficie di ablazione di un ghiacciaio la temperatura dell’aria (vedere fig. 7) e la pressione di vapore non mostrano evidenti variabilità a scala giornaliera e quindi le influenze sul glacier boundary layer dovute alla superficie glaciale sono assai ridotte e la variabilità è quasi esclusivamente funzione degli eventi che avvengono in quota (Hoinkes, 1954).
Da ultimo tramite le AWS sopraglaciali lombarde si rilevano intensità e frequenza delle precipitazioni solide che costituiscono l’alimentazione dei ghiacciai alpini e la
maggior fonte di incertezza nei modelli di bilancio di massa glaciale. La variabilità spaziale con la quale si verificano le precipitazioni nevose è infatti assai elevata e il numero di stazioni automatiche che ne misurano entità e frequenza è insufficiente a coprire con dettaglio l’alta ed altissima montagna alpina italiana. L’unico modo per rilevare dati di accumulo glaciale, sino ad oggi, è consistito nella esecuzione delle trincee nivologiche per misurare spessore, densità e caratteristiche della coltre nevosa sopraglacia. Questo tipo di indagini, che viene in genere svolto sui ghiacciai lombardi in stretta e fattiva collaborazione con il Centro Nivometeorologico di Bormio (Arpa Lombardia), è comunque dispendioso e richiede rilievi diretti che condurre sul terreno alla fine della stagione di accumulo (primavera) prima che inizi il periodo di ablazione. L’impossibilità di eseguire questi rilievi o di condurli al momento più opportuno (se infatti a fine primavera nevica ancora molto è necessario rieffettuare le misure) e l’importanza di monitorare non solo l’entità dell’accumulo ma anche le sue variazioni stagionali (persistenza, compattazione) hanno suggerito di dotare le AWS sopraglaciali con nivometri ad ultrasuoni (sonic ranger). Parallelamente, per i primi anni di funzionamento delle stazioni, per calibrare il metodo e confrontare i risultati con quelli ottenuti attraverso le tradizionali trincee nivologiche, queste sono state comunque eseguite in prossimità delle stazioni meteo alla fine della stagione di accumulo.

In fig. 9 e 10 sono stati riportati i grafici ottenuti dall’elaborazione dei dati registrati dal nivometro ad ultrasuoni durante il primo anno di attività della AWS1 Forni e dall’elaborazione dei dati rilevati dalla trincea nivologica eseguita a fine primavera dello stesso anno sempre presso il Ghiacciaio dei Forni. Il valore 0 corrisponde alla superficie glaciale esposta priva di copertura nevosa.

FIG. 9 – Spessori della copertura nevosa misurati al Ghiacciaio dei Forni dal sonic ranger (SR 50 Campbell) installato sulla AWS1 Forni durante il primo anno di attività. Le lettere si riferiscono agli strati identificati nella stratigrafia riportata in Fig. 10.
FIG. 10 – Stratigrafia del manto nevoso ottenuta da una trincea nivologica condotta a fine stagione di accumulo in prossimità della AWS1 Forni. Gli strati identificati sul terreno e marcati nel grafico da lettere maiuscole si riferiscono ai eventi riconosciuti nel diagramma del sonic ranger (Fig. 9).

I dati ottenuti dalle registrazioni del nivometro ad ultrasuoni e quelli desunti dall’interpretazione della stratigrafia (spessore-densità-cristallografia) del manto nevoso a fine primavera sono risultati in ottimo accordo e suggeriscono di ampliare l’utilizzo di questo tipo di strumentazione per rilevare con continuità intensità e persistenza della copertura nevosa soprageraziale.

CONCLUSIONI

I dati raccolti durante i primi anni di attività delle stazioni meteorologiche soprageraziali lombarde hanno permesso di descrivere e quantificare il microclima alla superficie dei ghiacciai alpini italiani, di quantificare i flussi energetici in entrata ed in uscita e di identificare fenomeni, come lo spirare del vento catabatico, prima ritenuti esclusivi di aree remote quali i grandi ghiacciai antartici e groenlandesi. Le stazioni meteorologiche soprageraziali lombarde non rappresentano un punto di arrivo, ma solo un punto di partenza e la loro installazione è stata progettata nell’ambito di progetti di ricerca scientifica che prevedono il conseguimento di importanti obiettivi per il raggiungimento dei quali i dati raccolti dalle stazioni meteorologiche rappresentano un preziosissimo supporto. Dal 2008 le stazioni ubicate sul Ghiacciaio dei Forni e sul Ghiacciaio Dosdè forni-

BIBLIOGRAFIA

BENISTON M. (2006) - Mountain weather and climate; a general overview and a focus on climatic change in the Alps. Hydrobiologia, 562, 3-16.

CITTERIO M., DIOLAIUTI G., SMIRAGLIA C., VERZA GP. & MERALDI E. (2007b) - Initial results from the Automatic Weather Station (AWS) on the ablation tongue of Forni Glacier (Upper Valtellina, Italy). Geografia Fisica e Dinamica Quaternaria, 141-151.

DARIO BELLINGERI (*) & ENRICO ZINI (*)

IMMAGINI DAL CIELO PER LO STUDIO DELLE VARIAZIONI
RECENTI DEI GHIACCIAI LOMBARDI

Riassunto: DARIO BELLINGERI & ENRICO ZINI, Immagini dal cielo per lo studio delle variazioni recenti dei ghiacciai lombardi.

Vengono qui presentati i risultati del monitoraggio planimetrico e volumetrico dei ghiacciai lombardi con l’utilizzo di immagini satellitari stereoscopiche ad alta risoluzione, con metodologia sviluppata in ARPA Lombardia ed applicata a diversi comprensori glaciali dal 2003. Inoltre, si presentano i risultati di una validazione del metodo di ricostruzione dei modelli digitali del terreno, con una stima degli errori sulla base di un rilievo GPS in modalità RTK effettuato sul Ghiacciaio Alpe Sud.

Abstract: DARIO BELLINGERI & ENRICO ZINI, Images from sky to study the recent variations of the Lombardy glaciers.

The results from planimetric and volumetric monitoring of glaciers in Lombardy, using high resolution stereoscopic satellite images, are presented. The methodology, developed in ARPA Lombardia, has been applied over different glacial areas from 2003. Furthermore, a validation test of DTM reconstruction has been conducted, based upon a GPS-RTK field campaign.

(*) ARPA Lombardia – Settore Sistemi Informativi Ambientali, Viale Restelli 3/1, 20124 Milano, tel. 02 69666320, fax 02 69666259, d.bellingeri@arpalombardia.it
SINTESI DEI DATI UTILIZZATI

Le tecniche di telerilevamento possono essere utilizzate efficacemente per il monitoraggio degli ambienti nivo-glaciali. Naturalmente, le tipologie di sensori e le tecniche di elaborazione variano in funzione, essenzialmente, della scala di lavoro, dei tempi di variazione del fenomeno da monitorare e dei costi dell’acquisizione ed elaborazione dei dati.

Ad esempio, per applicazioni a scala locale riguardanti il monitoraggio dei ghiacciai, non sono utilizzabili tipologie di satelliti e di sensori a medio-bassa risoluzione geometrica (ad esempio, Landsat o MODIS), che rappresentano invece un buon compromesso, ad esempio, per la mappatura multitemporale delle aree innevate a scala regionale.

Per il monitoraggio dei ghiacciai lombardi invece, l’alta risoluzione satellitare, viste le sue caratteristiche geometriche e spettrali, rappresenta la tipologia di dati telerilevati probabilmente più efficace. In particolare, il satellite commerciale IKONOS, acquisisce immagini a due differenti risoluzioni spaziale (4 e 1 metri) e in 4 bande spettrali (blu, verde, rosso, vicino infrarosso) (fig. 1a). Inoltre, il satellite è programmabile per acquisire immagini stereoscopiche (fig. 1b), utilizzabili quindi sia per un monitoraggio di tipo planimetrico (con accuratezze comparabili a quelle ottenibili con immagini aeree), sia per ricostruire il modello digitale del terreno con tecniche di stereorestituzione digitale, e operare quindi un monitoraggio anche di tipo volumetrico.

FIG. 1 - a) esempio delle due modalità di acquisizione del satellite IKONOS (multispettrale e panchromatica) e risultato della fusione dei due dati; b) rappresentazione schematica del processo di acquisizione di una coppia di immagini IKONOS in modalità stereoscopica.
Le immagini satellitari IKONOS, acquisite su diversi comprensori glaciali lombardi negli anni recenti, hanno permesso, grazie all’elevata risoluzione geometrica, un’accurata valutazione delle variazioni lineari e areali dei corpi glaciali. Inoltre, sfruttando le riprese stereoscopiche e quindi la possibilità di ricostruire i modelli digitali del terreno, è stato possibile valutare le variazioni di spessore e stimare le variazioni volumetriche, sia tramite confronto con cartografia storica che con riprese IKONOS ripetute.

Come emerge dalla fig. 2, sono stati rilevati i principali comprensori glaciali lombardi, e con l’ultima acquisizione del 2007 è stata raggiunta la copertura di circa il 70% dell’estensione dei ghiacciai regionali.

SINTESI DEI RISULTATI SUI COMPRENSORI GLACIALI INVESTIGATI

Monitoraggio planimetrico

Il primo e più ovvio utilizzo delle immagini satellitari acquisite sui comprensori glaciali lombardi è quello relativo al loro monitoraggio di tipo planimetrico. A titolo di esempio, si riporta (fig. 3), relativamente al Ghiacciaio dei Forni, una so-

FIG. 3 - Immagine IKONOS acquisita il 5 settembre 2006 sul Ghiacciaio dei Forni (in sintesi RGB “falso colore”), con sovrapposti i limiti del ghiacciaio in diverse annualità.

L’elevata risoluzione geometrica del dato satellitare permette una precisa valutazione degli arretramenti lineari e areali, oltre all’individuazione di una serie di evidenze geomorfologiche connesse all’evoluzione glaciale (crepacci, laminazioni, frammentazione delle fronti, collassi delle morene laterali, creazione di laghi effimeri di contatto glaciale, aumento della copertura detritica superficiale, ecc.). L’immagine seguente (fig. 4) ne riporta alcuni esempi, riferiti ad una porzione del Ghiacciaio dei Forni (confluenza del lobo di accumulo orientale).
Monitoraggio volumetrico

La metodologia relativa al monitoraggio volumetrico prevede l’orientamento relativo ed assoluto delle coppie stereoscopiche IKONOS, e tecniche manuali e semiautomatiche di stereorestituzione digitale, al fine di ricavare una maglia sufficientemente fitta di punti quotati, e quindi di aggiornare i modelli digitali di elevazione delle aree glaciali.

Tali DTM possono essere quindi confrontati con le informazioni raster e vettoriali storiche, al fine di stimare le diminuzioni di spessore assoluto del ghiaccio e le variazioni volumetriche.

Nel corso degli scorsi anni, sono state stimate le variazioni di spessore di ghiaccio (e ove possibile di volume totale) dei principali ghiacciai ripresi dalle immagini stereoscopiche, ed in particolare il Ghiacciaio dei Forni, il comprensorio del Monte...
Confinale e del Monte Sobretta in alta Valtellina, i ghiacciai del comprensorio del Bernina in alta Valmalenco (es., Scerscen Superiore e Inferiore, Fellaria Est e Ovest) e quelli del settore Adamello (es., Adamello, Venerocolo, Pisgana Est e Ovest).

Le immagini seguenti (figg. 5 e 6) rappresentano, relativamente ai due gruppi del Bernina e dell’Adamello, la ricostruzione tridimensionale delle immagini satellitari IKONOS, in cui le aree glaciali sono tematizzate in funzione della perdita stimata di spessore rispetto al modello digitale del 1981. Le immagini sono seguite da una tabella (tabb. 1 e 2) riassuntiva delle variazioni di spessore e di volume stimate per i principali individui glaciali dei due comprensori.

FIG. 5 - Ricostruzione tridimensionale dell’immagine IKONOS acquisita nel 2006 sul comprensorio del Bernina, in cui le aree glaciali sono tematizzate in funzione della riduzione di spessore stimata rispetto al DTM del 1981.
TABELLA 1 - Dati descrittivi dei principali ghiacciai del gruppo del Bernina e sintesi delle loro variazioni di spessore e di volume

<table>
<thead>
<tr>
<th>Ghiacciaio</th>
<th>Bernina</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scerscen Inf</td>
<td>5.705.427</td>
</tr>
<tr>
<td>Scerscen Sup</td>
<td>5.374.592</td>
</tr>
<tr>
<td>Fellaria E</td>
<td>5.007.073</td>
</tr>
<tr>
<td>Fellaria W</td>
<td>4.821.213</td>
</tr>
<tr>
<td>Caspoggio</td>
<td>476.733</td>
</tr>
<tr>
<td>Marinelli</td>
<td>211.417</td>
</tr>
<tr>
<td>Varuna</td>
<td>460.120</td>
</tr>
<tr>
<td>Tre Mogge</td>
<td>310.154</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area (mq)</th>
<th>Quota min</th>
<th>Quota max</th>
<th>Esposizione</th>
<th>Volume stimato (Mmc w.e.)</th>
<th>Q media</th>
<th>Periodo di riferimento analisi</th>
<th>Riduzione volumetrica stimata (Mmc)</th>
<th>Riduzione stimata di massa (Mmc w.e.)</th>
<th>Riduzione media di spessore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scerscen</td>
<td>3220</td>
<td>3910</td>
<td>SW</td>
<td>297,9</td>
<td>2985</td>
<td>2001-2006</td>
<td>106,4</td>
<td>97,6</td>
<td>17,0</td>
</tr>
<tr>
<td>Scerscen</td>
<td>3840</td>
<td>3840</td>
<td>S</td>
<td>183,7</td>
<td>183,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scerscen</td>
<td>3680</td>
<td>3070</td>
<td>SE</td>
<td>294,1</td>
<td>7,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scerscen</td>
<td>3000</td>
<td>2055</td>
<td>NW</td>
<td>183,9</td>
<td>2,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scerscen</td>
<td>2800</td>
<td>2917</td>
<td>SW</td>
<td>7,7</td>
<td>5,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scerscen</td>
<td>3180</td>
<td>0,8</td>
<td>W</td>
<td>2,1</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scerscen</td>
<td>3115</td>
<td>0,8</td>
<td>S</td>
<td>2,1</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scerscen</td>
<td>2917</td>
<td>0,8</td>
<td>S</td>
<td>2,1</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIG. 6 - Ricostruzione tridimensionale dell’immagine IKONOS acquisita nel 2007 sul comprensorio dell’Adamello, in cui le aree glaciali sono tematizzate in funzione della riduzione di spessore stimata rispetto al DTM del 1981.
Tabella 2: Dati descrittivi dei principali ghiacciai del gruppo dell’Adamello, e sintesi delle loro variazioni stimate di spessore e di volume.

<table>
<thead>
<tr>
<th>Area</th>
<th>Adameollo</th>
<th>Avio</th>
<th>Calotta</th>
<th>Pisgana E</th>
<th>Pisgana W</th>
<th>Venerocolo</th>
</tr>
</thead>
<tbody>
<tr>
<td>area (mq)</td>
<td>17.361.720</td>
<td>689.161</td>
<td>139.301</td>
<td>674.903</td>
<td>3.029.502</td>
<td>1.342.582</td>
</tr>
<tr>
<td>Quota min</td>
<td>2650</td>
<td>2650</td>
<td>2930</td>
<td>2570</td>
<td>2565</td>
<td>2560</td>
</tr>
<tr>
<td>Quota max</td>
<td>3440</td>
<td>3145</td>
<td>3200</td>
<td>3140</td>
<td>3260</td>
<td>3020</td>
</tr>
<tr>
<td>esposizione</td>
<td>NW</td>
<td>NW</td>
<td>N</td>
<td>N</td>
<td>NW</td>
<td>NW</td>
</tr>
<tr>
<td>Volume stimato (Mmc w.e.)</td>
<td>1689,9</td>
<td>9,6</td>
<td>1,1</td>
<td>18,5</td>
<td>99,4</td>
<td>39,6</td>
</tr>
<tr>
<td>q media</td>
<td>3045</td>
<td>2898</td>
<td>3060</td>
<td>2855</td>
<td>2913</td>
<td>2880</td>
</tr>
</tbody>
</table>

Da catasto ghiacciai (1999)

<table>
<thead>
<tr>
<th>Area</th>
<th>Adameollo</th>
<th>Avio</th>
<th>Calotta</th>
<th>Pisgana E</th>
<th>Pisgana W</th>
<th>Venerocolo</th>
</tr>
</thead>
<tbody>
<tr>
<td>area (mq)</td>
<td>17.377.793</td>
<td>789.528</td>
<td>256.142</td>
<td>805.167</td>
<td>3.249.134</td>
<td>1.448.300</td>
</tr>
<tr>
<td>Periodo di riferimento analisi</td>
<td>1981-2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riduzione volumetrica stimata (Mmc)</td>
<td>294,9</td>
<td>7,2</td>
<td>1,7</td>
<td>17,3</td>
<td>67,1</td>
<td>12,8</td>
</tr>
<tr>
<td>Riduzione stimata di massa (Mmc w.e.)</td>
<td>270,4</td>
<td>6,6</td>
<td>1,5</td>
<td>15,8</td>
<td>61,6</td>
<td>11,8</td>
</tr>
<tr>
<td>Riduzione media di spessore</td>
<td>17,0</td>
<td>9,1</td>
<td>6,6</td>
<td>21,4</td>
<td>20,7</td>
<td>8,9</td>
</tr>
</tbody>
</table>

Da catasto ghiacciai (1999)

Questo tipo di analisi è parzialmente limitante nel caso in cui vengano confrontati DTM ricavati con metodologie differenti e con differente accuratezza. Questo limite è parzialmente superato nel caso si possa disporre della ripetizione di riprese IKONOS a distanza di pochi anni sui medesimi ghiacciai. Ad esempio, l’acquisizione ripetuta sul Ghiacciaio dei Forni a distanza di soli 3 anni (2003 e 2006) ha consentito la stima delle variazioni volumetriche recenti e non solamente rispetto ai DEM “storici”.

FIG. 7 - Variazioni di spessore del Ghiacciaio dei Forni dal 2003 al 2006.
Le perdite di spessore medie in questo triennio sul Ghiacciaio dei Forni (fig. 7) sono state notevoli (con punte di circa 20 metri) e la variazione totale stimata di volume è risultata di circa 54 milioni di m³. Naturalmente le perdite di spessore maggiori si registrano alle quote più basse nella zona della lingua glaciale, dove il bilancio fra accumuli e fusione è più sfavorevole; in particolare spiccano le aree a maggiore perdita prossime, ad esempio, alla zona interessata dal piccolo lago di contatto glaciale o alla zona di emersione del substrato roccioso alla confluenza del lobo orientale. Alle quote più elevate le perdite di spessore sono ovviamente più contenute, e spiccano situazioni locali in cui si misurano moderati aumenti di spessore (presumbibilmente dovuti in maggior parte alla traslazione di porzioni fortemente crepacciate).

Come ulteriore sintesi dei risultati, si propone il grafico in fig. 8, in cui vengono riportate le riduzioni medie annue stimate di spessore di ghiaccio, relativamente ad una serie di punti campione individuati a differenti quote sui diversi ghiacciai interessati (e quindi su ghiacciai di differente tipologia, caratteristiche dei bacini di accumulo, esposizione media, ecc.).

Le medie annue di perdite di spessore sono relative a due differenti periodi temporali: il primo e più lungo (1981-2006), deriva dal confronto dell’altimetria derivata dalla C.T.R. del 1981 con i DTM ricostruiti sulla base dei dati stereoscopici IKONOS del 2006. Analizzando questa prima serie emerge chiaramente che ogni punto campionato ha subito riduzioni sensibili di spessore, in particolare, come prevedibile, alle quote relativamente inferiori dove il bilancio fra fusione e accumulo è mag-
giornalmente negativo. L’altra serie è relativa al solo sotto-periodo 2003-2006 e ad un sottoinsieme di punti (ovvero per le sole aree in cui è disponibile la doppia acquisizione con IKONOS), ed evidenzia che il fenomeno della perdita di spessore ha subito una decisa accelerazione negli anni recenti, caratterizzati mediamente da una riduzione degli accumuli nevosi e da un aumento della temperatura media.

VALIDAZIONE DELLA METODOLOGIA DI STIMA CON RILIEVO GPS-RTK

L’acquisizione dell’immagine satellitare del 5 settembre 2006 sull’area dell’alta Valtellina è stata oggetto di una validazione della metodologia, in particolare al fine di una quantificazione degli errori introdotti nella stima della quota assoluta utilizzando le immagini stereoscopiche IKONOS.

A tale scopo, sono stati utilizzati i dati a terra ottenuti con una campagna intensiva sul Ghiacciaio Alpe Sud (Monte Sobretta, alta Valfurva, estensione di circa 0,1 Km²), in cui sono stati acquisiti ben 5299 punti quotati con un rilievo GPS impiegato in real time (RTK), in modalità cinematico continuo, effettuato il 17 settembre 2006. Il rilievo è stato effettuato da Marco Belò (Università degli Studi di Milano e Trimble Italia S.r.l.) e da Luigi Bonetti e Stefano Urbani (ARPA Lombardia, Centro Nivometeorologico di Bormio).

FIG. 9 - Immagine IKONOS del Ghiacciaio Alpe Sud (M. Sobretta) con sovrapposti i 5299 punti quotati ottenuti con apposito rilievo GPS-RTK effettuato nell’estate 2006.
L’analisi statistica degli errori ha riguardato un totale di 428 punti quotati ottenuti tramite la stereorestituzione digitale e l’individuazione automatica dei punti omo-loghi (ovvero dei punti quotati individuati tramite collimazione delle due immagini che formano la coppia stereoscopica).

In particolare, sono stati analizzati gli scostamenti fra la quota stimata da satellite rispetto al valore misurato con il rilievo GPS-RTK (dotato di precisione centimetrica).

Si precisa che l’analisi è stata condotta sulla totalità dei punti quotati individuati tramite stereorestituzione digitale sul Ghiacciaio Alpe Sud, senza quindi la ricerca e l’eliminazione di presunti outliers.

Ad ogni punto quotato individuato tramite stereoscopia digitale, è stata associata (con l’operazione GIS spatial join) la quota del punto GPS più vicino. L’ottima densità dei punti misurati durante la campagna a terra garantisce la rappresentatività della procedura (la distanza in pianta fra i punti "IKONOS" e i punti "GPS" infatti è, per tutti i punti investigati, inferiore ai tre metri).

Il grafico in fig. 10 sintetizza gli scostamenti fra quota stimata e quota misurata per il totale dei 428 punti, in un intervallo di quote assolute variabili da circa 3120 a circa 3225 m. Il coefficiente di correlazione fra valori stimati e misurati è risultato dello 0,998. Lo scarto quadratico medio o RMSE è risultato di 0,98 m.

FIG. 10 - Retta di regressione, relativa ai 428 punti campione, fra i valori di quota stimata con stereoscopia satellitare e le misure GPS-RTK a terra.
Analizzando la statistica relativa agli scarti (fig. 11), sul totale dei punti con quota stimata da satellite, il 70,6 % ha scarto assoluto rispetto alla quota misurata con GPS minore di un metro. Il 25,4 % ha scarto assoluto maggiore di un metro e comunque inferiore a due metri.

FIG. 11 - Distribuzione degli scarti fra quota stimata e misurata sui 428 punti campione.

Dal punto di vista della distribuzione “geografica” degli scarti fra quota stimata e misurata (fig. 12), l’errore pare distribuito piuttosto uniformemente, con solo un leggero aumento ai margini del corpo glaciale (presumibilmente anche a causa dell’aumento della pendenza).
Da questa validazione, emerge come il grado di accuratezza ottenibile nella stima della quota utilizzando immagini IKONOS stereoscopiche, seppur naturalmente non sia comparabile con quella ottenibile con i rilievi GPS di precisione o con i rilievi aerofotogrammetrici, appaia più che accettabile per il monitoraggio volumetrico dei ghiacciai, in particolare se questo viene effettuato su base pluriennale. Gli errori introdotti con tale metodologia, infatti, anche se certamente non trascurabili, risultano decisamente inferiori alle perdite di spessore medie dei ghiacciai lombardi misurate negli anni recenti.

Si sottolinea inoltre che il monitoraggio da satellite fornisce risultati omogenei su aree estese e sui corpi glaciali poco accessibili, per i quali le tecniche tradizionali di campo risulterebbero difficilmente applicabili e quelle aerofotogrammetriche sarebbero troppo onerose.
I dati satellitari IKONOS ad alta risoluzione acquisiti in stereoscopia si sono rivelati un ottimo strumento per il monitoraggio quali-quantitativo delle dinamiche glaciali su aree estese, sia dal punto di vista planimetrico che volumetrico. I risultati ottenuti, in termini di estensione delle aree monitorate e di accuratezze orizzontali e verticali, sono di supporto in vista del proseguimento del monitoraggio dei ghiacciai lombardi anche con tecniche satellitari.

Si sottolinea nuovamente come la metodologia sviluppata è complementare e integrata con le tecniche glaciologiche tradizionali (misure frontali, bilanci di massa, bilanci energetici, ecc.) ed i due approcci possano coesistere in un’ottica di monitoraggio integrato e “multi-scala” dei corpi glaciali.

L’alta risoluzione satellitare in stereoscopia, a fronte di alcune limitazioni (soprattutto i costi ancora piuttosto elevati e la non completa garanzia dell’effettiva acquisizione delle aree di interesse), ha il vantaggio di poter effettuare analisi sufficientemente affidabili e ripetibili su aree estese o di non semplice accessibilità per le misure glaciologiche di campo.
BIBLIOGRAFIA

BELLINGERI D. & ZINI E. (2005) - Utilizzo di immagini IKONOS stereoscopiche per il monitoraggio dei ghiacciai e per la stima degli accumuli di frana. Atti della 9° Conferenza Nazionale ASITA.

IMPATTI INATTESI ED ACCELERATI DEL CAMBIAMENTO CLIMATICO SULLA VEGETAZIONE ALPINA E PERIGLACIALE

RIASSUNTO: CANNONE N., DIOLAIUTI G., GUGLIELMIN M. & SMIRAGLIA C.,
Impatti inattesi ed accelerati del cambiamento climatico sulla vegetazione alpina e periglaciale

Nel sito del Passo dello Stelvio sono state analizzate le variazioni areali della vegetazione intercorse dal 1953 al 2003: al di sotto dei 2500 m di quota si è osservata una rapida espansione della vegetazione arbustiva, mentre al di sopra dei 2500 m si sono osservati inattesi pattern di regressione della vegetazione associati alla degradazione del permafrost.

Nell’area del Ghiacciaio della Sforzellina sono state analizzate le variazioni del ghiacciaio (fluttuazioni frontali, bilancio di massa, variazioni dell’area superficiale) e della vegetazione colonizzatrice dell’area proglaciale. Sia il ritiro del ghiacciaio che le dinamiche della vegetazione indicano un’impressionante accelerazione delle risposte ecosistemiche a fronte di un modesto incremento della temperatura durante l’estate. Ciò permette di ipotizzare che nei sistemi più sensibili si sia sorpassata una soglia oltre la quale anche variazioni minori sono in grado di produrre impatti maggiori.

(*) Dipartimento di Biologia ed Evoluzione, Università degli Studi di Ferrara, Corso Ercole I d’Este, 32 – 44100 – Ferrara; e-mail: nicoletta.cannone@unife.it
(**) Dipartimento di Scienze della Terra, Università degli Studi di Milano
(***) DBSF, Università dell’Insubria, Varese

Si ringraziano il Servizio di Monitoraggio Geologico di ARPA Lombardia, il Servizio Meteorologico di Bolzano, l’Azienda Elettrica Milanese (AEM) ed il Servizio Meteorologico Svizzero per i dati climatici. Le ricerche svolte al Ghiacciaio della Sforzellina sono state finanziate nell’ambito del progetto PRIN-MIUR 2005 “Increasing rate of climate change impacts on high mountain areas: cryosphere shrinkage and environmental effects” coordinato dal Prof. Claudio Smiraglia.
ABSTRACT: CANNONE N., DIOLAIUTI G., GUGLIELMIN M. & SMIRAGLIA C., Unexpected and accelerated impacts of climate change on alpine and periglacial vegetation

During the last 50 years, the temperature rise in the Alps was found twice more than the global temperature increase. The biotic components (flora and fauna) and the abiotic components (especially glaciers and permafrost) from the Alpine regions at high elevations shows significant evidence of climate change influence. To verify if there are any unexpected and accelerating impacts of climate change on the Alpine ecosystems, two different areas of the Central Italian Alps (Upper Valtellina, Sondrio) were chosen: the Stelvio Pass and the Sforzellina Glacier.
In the Stelvio Pass area, vegetation area variations were analysed from 1953 to 2003: below an elevation of c. 2500 m a rapid expansion of tree vegetation was observed while above 2500 m of altitude a rapid regression pattern of vegetation associated to permafrost degradation was observed.
In the Sforzellina Glacier area, the glacier variations (i.e., terminus fluctuations, mass balance, area variations) were analysed along with the pattern of the vegetation that recently colonized the proglacial zone. Both the glacier shrinkage and the vegetation dynamics indicate an impressive acceleration of the ecosystem response to a small increase of air temperatures during summer. This allows to detect systems more sensitive to minor variations which are capable to produce greater impacts.

INTRODUZIONE

Il clima è uno dei più importanti fattori che determinano le caratteristiche delle componenti abiotiche (es. ghiacciai, permafrost) (Haeberli, 1990) e delle componenti biologiche (es. vegetazione) (Hellenberg, 1988) degli ecosistemi. I cambiamenti climatici avvenuti nel passato hanno influenzato la vegetazione sia a livello di singole specie che a livello di intere comunità, fino alla scala del paesaggio, con importanti conseguenze su presenza, distribuzione e caratteristiche della flora e della vegetazione (Birks, 1991; Wick & Tinner, 1997).
L’IPCC (Intergovernmental Panel on Climate Change, IPCC) ha calcolato che durante il XX secolo è avvenuto un riscaldamento del clima a livello globale, con un aumento medio della temperatura dell’aria di circa +0,6°C (IPCC, 2001).
Gli impatti del cambiamento climatico sono ormai evidenti su un’ampia serie di organismi viventi, sia vegetali che animali (Walther & alii, 2002; Root & alii, 2003) e si prevede che saranno più intensi e più rapidi nelle regioni alle alte latitudini e nelle aree di alta quota. Infatti, alle alte quote ed alle alte latitudini le componenti bio-

Per quanto riguarda gli ecosistemi vegetali, la vegetazione di alta quota è considerata altamente sensibile e vulnerabile ai cambiamenti climatici a lungo termine (Gottfried & alii, 1998; Theurillat & Guisan, 2001), benché alcuni autori ritengano che gli impatti del cambiamento climatico a breve termine siano limitati a causa della crescita lenta e dei lunghi cicli vitali delle specie alpine (Pauli & alii, 1999). Negli ultimi 50 anni la sensibilità degli ecosistemi vegetali alpini è stata evidenziata dall’innalzamento di 120-340 m dei limiti di distribuzione di specie legnose ed arbustive (Kullman, 2002), dalla migrazione altitudinale di piante dell’orizzonte alpino e nivale (Grabherr & alii, 1994; Walther & alii, 2005), da cambiamenti della composizione di comunità vegetali entro quadrati permanenti di monitoraggio (Keller & alii, 2005).

Lo scopo del presente lavoro è verificare due principali quesiti scientifici: 1) Esistono impatti inattesi del cambiamento climatico non previsti dai principali modelli di previsione? Gli impatti del cambiamento climatico sono evidenti anche ad un livello di organizzazione superiore alla specie (es. comunità)? 2) E’ in corso un’accelerazione degli impatti del cambiamento climatico, in particolare nell’ultima decade?

AREE DI STUDIO

Le aree di studio sono ubicate nelle Alpi Centrali Italiane, in Alta Valtellina (SO). In particolare sono state selezionate due aree principali di investigazione: 1) il Passo dello Stelvio; 2) il Ghiacciaio della Sforzellina. Entrambe le aree sono ubicate al di sopra del limite del bosco.

Passo dello Stelvio

Le aree investigate sono estese su una superficie di 5,6 Km², ubicate a quote superiori a 2230 m, includendo gli orizzonti subalpino (fino a 2600 m), alpino (2600-2800 m) e nivale (<2800 m). Nelle aree analizzate gli unici impatti antropici sono
legati al pascolo estivo estensivo che, dalla documentazione esistente, risultano costanti dal 1950, permettendo di escludere il cambiamenti di uso del suolo come fattore responsabile delle variazioni della vegetazione. La vegetazione del Passo dello Stelvio è costituita da un mosaico di diverse tipologie di comunità vegetali tra le quali: brughiere alpine (Vaccinio-Rhododendretum), brughiere alpine nane (Loiseleurieto-Cetrarietum), praterie alpine climaciche (Caricetum curvulae), vegetazione delle vallette nivali (Salicetum herbaceae), vegetazione pioniera (es. Oxyrietum digynae), e vegetazione di torbiera. La vegetazione dell’area del Passo dello Stelvio è stata descritta in dettaglio da Giacomini & Pignatti (1955), i quali hanno anche realizzato una carta fitosociologica in scala 1:12.500.

Ghiacciaio della Sforzellina
Il Ghiacciaio della Sforzellina è ubicato in Valfurva, ad una quota compresa tra 2850 e 3100 m, è esposto a Sud-Ovest. L’area proglaciale, che si estende da 2700 a 2850 m, è caratterizzata da superfici con diversa età di deglaciazione (da 1 anno a >80 anni) e dall’assenza di forme periglaciali (quali ad esempio suoli poligonali), se non alcuni lobi di geli/soliflusso sul versante Nord-Est della morena del 1920. La vegetazione delle aree circostanti il circo glaciale della Sforzellina e dell’area proglaciale è costituita da un mosaico di comunità vegetali prevalentemente erbacee sia continue che discontinue, che includono le praterie climaciche (Caricetum curvulae), la vegetazione di valletta nivale (Salicetum herbaceae), le comunità pioniere (es. Oxyrietum digynae).

In ambito italiano, il Ghiacciaio della Sforzellina rappresenta uno dei siti che possiede le misure glaciologiche più antiche e più continue delle variazioni frontali (dal 1925 ad oggi) e del bilancio di massa (dal 1987 ad oggi).

METODI

Passo dello Stelvio
Nell’area del Passo dello Stelvio nel 2003 è stata realizzata una nuova carta fitosociologica della vegetazione. Tale carta è stata confrontata, tramite GIS, con la carta realizzata da Giacomini & Pignatti (rilevata nel 1953 e pubblicata nel 1955). Le variazioni della vegetazione nel periodo 1953-2003 sono state valutate utilizzando tre principali criteri: a) copertura % (usando tre classi: suolo nudo, vegetazione discontinua, vegetazione continua); b) dinamismo (in funzione degli stadi successionali); c) serie ecologiche (con riferimento alle tipologie di habitat individuando sette serie principali: arbusteti, praterie, torbiere, vallette nivali, ambiti pionieri, altro,
suolo nudo). Per il periodo 1953-2003 sono stati analizzati i record di temperatura dell’aria e le precipitazioni (dalle stazioni meteorologiche di Sils e di Silandro, rispettivamente), mentre i dati di copertura nivale sono stati ottenuti a partire dal 1978 dalla stazione meteorologica di Cancano. Gli impatti del cambiamento climatico sono stati analizzati e quantificati confrontando i dati di vegetazione con i dati climatici, in particolare per verificare se negli ultimi 50 anni si siano verificati impatti su ampie superfici (e quindi non più limitati a livello di singole specie bensì di intere comunità vegetali, visibili alla scala del paesaggio) e se vi siano stati impatti inattesi, mai previsti dai modelli esistenti.

Ghiacciaio della Sforzellina
La vegetazione dell’area proglaciale è stata descritta analizzando un totale di 23 plot di 1x1 m, la cui posizione è stata acquisita attraverso DGPS (differential global positioning system) e successivamente mappati in un sistema GIS. Sono state analizzate superfici con diverse età di deglaciazione. Per ogni plot è stata analizzata la copertura vegetale % totale e la copertura % di ciascuna specie. Il dinamismo del ghiacciaio è stato ricostruito analizzando diversi parametri: a) fluttuazioni della fronte (a partire dal 1971); b) bilanci di massa (dal 1987 ad oggi); c) superficie ed altimetria del ghiacciaio (con tecniche DGPS e profili GPR), d) analisi di ortofoto. I dati glaciologici sono stati inseriti in un sistema GIS e confrontati con quelli vegetazionali. Per l’area di studio sono stati analizzati i principali parametri climatici, in particolare la temperatura dell’aria e le precipitazioni, utilizzando le stazioni meteorologiche di Uzza e del Ghiacciaio dei Forni. I dati vegetazionali, glaciologici e climatologici sono stati confrontati per valutare e quantificare eventuali accelerazioni del cambiamento climatico, in particolare nell’ultima decade.

RISULTATI E DISCUSSIONE
Nel periodo dal 1953 al 2003 le condizioni climatiche nelle Alpi hanno registrato un incremento della temperatura media annua dell’aria, con un innalzamento più pronunciato (circa 1,0°C) a partire dagli anni ‘80. Il trend delle precipitazioni risulta meno chiaro: infatti, nonostante le precipitazioni totali siano leggermente aumentate (ca. 10%), le precipitazioni nevose sono diminuite sia come spessore che come permanenza della copertura nivale (Cannone & alii, 2007). Il riscaldamento climatico ha anche indotto processi di degradazione del permafrost con un aumento di temperature di 1,2°C registrati nella perforazione in roccia del Monte Scorluzzo (Guglielmin, 2004).
Nel periodo 1953-2003 la vegetazione ha mostrato significativi cambiamenti con una tendenza generale verso l’incremento delle coperture, di un’evoluzione delle comunità verso fasi più mature e più evolute, con l’ingresso di comunità provenienti da quote inferiori e con un significativo innalzamento altitudinale degli arbusti fino a 2500 m. Oltre il limite dei 2500 m i cambiamenti della vegetazione mostrano andamenti contrastanti, con la comparsa di impatti inattesi e mai precedentemente individuati dai modelli di previsione esistenti.

I cambiamenti di copertura vegetale hanno pattern eterogenei benché, a livello dell’intera area di studio, gli aumenti siano superiori alle diminuzioni (22,1% contro 11,6%). I maggiori cambiamenti sono stati osservati tra 2230 e 2500 m, dove si è verificato un forte aumento delle coperture, mentre al di sopra dei 2500 m vi sono pattern contrastanti, con diminuzioni di copertura soprattutto tra 2650-2700 e sopra i 2800 m.

Anche dal punto di vista del dinamismo della vegetazione vi sono cambiamenti eterogenei, con una prevalenza dei processi di espansione su quelli di regressione (34,8% contro 20,2%). Inoltre, tali cambiamenti sono eterogenei a livello spaziale, indicando pattern asimmetrici.

Le serie ecologiche hanno subito cambiamenti “a cascata”, con feedback tra le diverse serie interessate (tab. 1).

In particolare, lo sviluppo degli arbusti ha causato una contemporanea regressione verso quote superiori della prateria alpina, la quale ha indotto una significativa con-

TABELLA 1 - Cambiamenti (%) delle serie ecologiche relative alle principali tipologie di habitat nel periodo 1953-2003 in funzione del range altitudinale (ripreso da Cannone & alii, 2007).

<table>
<thead>
<tr>
<th>Habitat</th>
<th>2230-2400 m</th>
<th>2400-2500 m</th>
<th>2500-2600 m</th>
<th>2600-2700 m</th>
<th>2700-2800 m</th>
<th>>2800 m</th>
<th>Totale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arbusteti</td>
<td>+33,3</td>
<td>+28,1</td>
<td>-3,5</td>
<td>-1,3</td>
<td>Nd</td>
<td>Nd</td>
<td>+9,4</td>
</tr>
<tr>
<td>Praterie</td>
<td>-31,3</td>
<td>-30,7</td>
<td>+14,6</td>
<td>-2,3</td>
<td>+9,0</td>
<td>-8,0</td>
<td>-8,1</td>
</tr>
<tr>
<td>Torbiere</td>
<td>-6,6</td>
<td>-0,5</td>
<td>-2,2</td>
<td>-2,3</td>
<td>Nd</td>
<td>Nd</td>
<td>-1,9</td>
</tr>
<tr>
<td>Vallette nivali</td>
<td>Nd</td>
<td>-1,6</td>
<td>-14,1</td>
<td>+3,9</td>
<td>+2,4</td>
<td>Nd</td>
<td>-1,6</td>
</tr>
<tr>
<td>Comunità pioniere</td>
<td>+2,3</td>
<td>+2,9</td>
<td>+7,1</td>
<td>-5,0</td>
<td>+7,7</td>
<td>-31,0</td>
<td>-2,7</td>
</tr>
<tr>
<td>Altre</td>
<td>+0,1</td>
<td>Nd</td>
<td>+0,6</td>
<td>Nd</td>
<td>Nd</td>
<td>Nd</td>
<td>+0,1</td>
</tr>
<tr>
<td>Suoli nudi</td>
<td>+2,2</td>
<td>+1,8</td>
<td>-2,5</td>
<td>+7,0</td>
<td>-19,1</td>
<td>+39</td>
<td>+4,7</td>
</tr>
</tbody>
</table>
trazione delle comunità di valletta nivale e delle torbiere. I tassi di incremento degli arbusti nel nostro sito di studio sono tra i più alti al mondo registrati per aree nelle quali l’uso del suolo non ha mostrato modificazioni. Infatti, si è osservato un aumento degli arbusti che raggiunge +6,7% per decade, molto superiore a quanto registrato in altre aree del mondo, quale ad esempio l’Artico del Nord America (Chapin & alii, 2005).

La vegetazione pioniera che, teoricamente, avrebbe dovuto mostrare una forte espansione verso le quote superiori, ha invece subito un’espansione al di sotto dei 2600 m, mentre al di sopra di tale quota ha mostrato pattern contrastanti ed inattesi, con decrementi tra 2600 e 2700 m ed anche al di sopra dei 2800 m. Inoltre, anche il suolo nudo ha mostrato cambiamenti inattesi, con un significativo aumento al di sopra dei 2800 m. Una possibile causa di tali impatti inattesi potrebbe essere la degradazione del permafrost ed il concomitante aumento di processi di instabilità superficiale e di disturbo.

Tali risultati indicano che la vegetazione degli orizzonti alpino e nivale risponde in modo rapido e flessibile alle sollecitazioni climatiche, diversamente ipotizzato da Theurillat & Guisan (2001), che ritengono che la vegetazione alpina sia caratterizzata da notevole inerzia e che solo incrementi di temperatura superiori a 2°C possano indurne significativi cambiamenti.

I risultati ottenuti al Passo dello Stelvio dimostrano per la prima volta che gli impatti del cambiamento climatico sono evidenti ad un livello ecologico superiore a quello della specie, che interessa intere comunità vegetali ed è visibile a livello di ampie superfici. In accordo con quanto sostenuto da Neilson (1993), tali dati dimostrano che sono in atto cambiamenti climatici di grande portata, in grado di dare segnali evidenti ai maggiori livelli di organizzazione biologica.

IMPATTI ACCELERATI DEL CAMBIAMENTO CLIMATICO

TABELLA 2 - Copertura vegetazionale totale (%), abbondanza delle specie e principali parametri topografici di ciascun plot di vegetazione analizzato.

Gli indici esprimono l’abbondanza relativa di ciascuna specie (+ = <1%; 1 = 1-5%; 2 = 5-10%; 3 = 10-15%; 4 = 15-20%; 5 = 20-25%; 6 = 25-50%; 7 = 50-75%; 8 >75%).

Numero di Plot	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23		
Ranunculus glacialis	+	+	+	+	+	+	1	2																	
Cerastium uniflorum	+	1	+	1	2	1	1	7	1	1	1	1	1												
Musch	+	+	1	1	1	1	1	1																	
Poa laxa	+	+	+	1	2	1	2																		
Geum reptans	+	1	+	1	1	1	1	2	1	1	1	1	2	1	1	1	3	1							
Leucanthemopsis alpina	+	1	+	1	1	1	1	2	1																
Saxifraga hrevoide	+	+	1	1																					
Poa alpina	+	1																							
Saxifraga bryoides	+	1	+																						
Poa alpina vivipara	+	1																							
Oxystegia elata	+	1	1																						
Sedum alpestre	+	1																							
Salix erubacea	+	1																							
Saxifraga oppositifolia	+	+	+	1																					
Veronica alpina	+	1																							
Lamia alpina	+	1																							
Epilobium anagallidifolium	+	1																							
Taraxacum alpinum	+	1																							
Sedum alpestre	+	1																							
Salix erubacea	+	1																							
Saxifraga oppositifolia	+	+	1																						
Armeria alpina	+	1																							
Luzula spicata	+	1																							
Cardamine resedifolia	+	1																							
Licheni terricoli	+																								
Licheni epilici	+																								
Copertura totale %	0	1	1	1	14	0.1	1	2	15	7	22	45	18	4	20	10	18	38	0.1	15	60	65	90		
Età di deglaciazione	0	1	1	1	6	1	1	3	7	7	11	25	25	25	25	25	25	25	25	25	25	25	30	30	30
Pendenza (°)	0	0	0	2	1	2	2	18	20	2	1	2	1	2	1	2	1	2	1	2	1	2			

122
L’analisi della vegetazione dell’area proglaciale (tab. 2) si è estesa da aree deglaciate da un solo anno ad aree deglaciate da quasi un centinaio di anni (depositi morenici del 1920 ca.). La colonizzazione vegetale inizia già sulle superfici deglaciate da un solo anno, è caratterizzata da coperture generalmente molto basse (con massimi del 14% in alcuni siti più riparati) ed è sostenuta da individui sparsi di otto diverse specie di spermatofite e da briofite (Cannone & alii, 2008). Inoltre, le specie che colonizzano tali superfici non sono solo specie pioniere, come ci si sarebbe aspettati, bensì specie tipiche dei primi stadi successionali e quindi capaci sia di effettuare la colonizzazione dei suoli nudi che di persistere nel corso di differenti stadi successionali fino a fasi di media maturità delle comunità vegetali. Da un punto di vista ecologico le otto specie appartengono a diverse serie di vegetazione, con una prevalenza della vegetazione dei detriti (Geum reptans, Cerastium uniflorum) e con la presenza di specie tipiche delle praterie alpine iniziali (Poa alpina, Saxifraga bryoides), mentre solo una di queste specie (Sagina saginoides) appartiene alla vegetazione di valletta nivale. Considerato che si tratta di un’area adiacente alla fronte di un ghiacciaio ci si sarebbe attesi una prevalenza di specie di valletta nivale, adattate a suoli caratterizzati da elevato spessore del manto nevoso e da una prolungata permanenza dello stesso.

Le superfici degradate da 6-11 anni presentano vegetazione discontinua con basse coperture (2-3% in media con picchi del 35% in aree con condizioni più riparate), con la presenza di 12 specie di spermatofite, dominate da Geum reptans e Cerastium uniflorum. Rispetto alle superfici appena degradate la composizione floristica è leggermente diversa, con l’ingresso di specie sia dei primi stadi delle successioni (Oxyria digyna) che di valletta nivale (Cerastium cerastioides) e la scomparsa di specie tipiche dei primi stadi di colonizzazione (Ranunculus glacialis).

La ricchezza floristica e le coperture sono significativamente maggiori sulle superfici degradate da 25 anni, mentre su quelle degradate da più di 80 anni compare la prateria alpina iniziale, con coperture quasi continue ed una variazione netta della copertura floristica, con dominanza di Poa alpina, Luzula spicata e l’ingresso di Salix herbacea e Sedum alpestre.

I dati relativi alla colonizzazione di superfici con diversa età di deglaciazione indicano una significativa accelerazione delle dinamiche di colonizzazione (Cannone & alii, 2008), con una velocità da 4 a 8 volte maggiore rispetto alle cronosequenze glaciali note per tutte le Alpi (es. Pirola & Credaro, 1993; Raffl & Erschbamer, 2004; Tscherko & alii, 2005). Infatti, normalmente, la colonizzazione non inizia prima dei 4-8 anni ed è sostenuta da specie pioniere, mentre per l’ingresso delle specie tipiche dei primi stadi delle successioni (che alla Sforzellina colonizzano le superfici deglaciate da un anno) normalmente sono necessari 10-25 anni dopo il ritiro del ghiacciaio.
Tali dati, confrontati con i dati relativi all’evoluzione glaciale confermano come nell’area di studio i sistemi biotici (vegetazione) ed abiotici (ghiacciai) forniscano risposte univoche, coerenti e sincrone. Tuttavia, per quanto riguarda specificamente l’area della Sforzellina, l’accelerazione delle risposte sia biotiche che abiotiche in particolare negli ultimi 35 anni e soprattutto post 2002, non corrisponde ad un significativo input climatico. Infatti, nel periodo considerato per l’area di studio si è osservato soltanto un lieve incremento della temperatura dell’aria durante l’estate, mentre a livello di temperature medie annue la tendenza non mostra significativi segni di riscaldamento.
Anche questo quindi è un impatto che possiamo definire inatteso del cambiamento climatico e che pone una domanda: abbiamo forse superato una soglia, al di là della quale anche cambiamenti minori sono in grado di provocare risposte significative a livello ambientale?
BIBLIOGRAFIA

MANUELA PELFINI (*)

LA VEGETAZIONE ARBOREA PER LA RICOSTRUZIONE DELL’EVOLUZIONE GLACIALE E DEL SEGNALE CLIMATICO

RIASSUNTO: PELFINI M., La vegetazione arborea per la ricostruzione dell’evoluzione glaciale e del segnale climatico

La vegetazione arborea, la sua velocità di crescita e la sua dinamica rappresentano oggi uno strumento prezioso sia per lo studio delle fluttuazioni glaciali storiche e recenti, sia per l’analisi del segnale climatico. Il riscaldamento attuale sta inducendo sensibili cambiamenti nell’ambiente d’alta montagna. La risposta più evidente è data dalla contrazione delle masse glaciali e dall’ampliamento delle aree proglaciali che vengono recolonizzate anche dalla vegetazione arborea, la quale, allo stesso tempo, tende ad innalzare i suoi limiti altitudinali. Il progressivo ampliamento del numero di ghiacciai coperti da detrito consente l’ingresso della vegetazione epiglacial, la cui persistenza è controllata dalla dinamica glaciale stessa. Le piante arboree, disturbate dai movimenti del ghiaccio e del detrito su cui poggiano, costituiscono un record di dati per lo studio dei movimenti superficiali. Parallelamente le sequenze degli anelli di accrescimento conservano al loro interno il segnale climatico, lo stesso responsabile delle fluttuazioni glaciali. Le fasi di avanzata, specie quelle relative al culmine della Piccola Età Glaciale, hanno travolto la vegetazione arborea, permettendo la conservazione di tronchi sepolti all’interno delle morene deposte, strumento indispensabile per la ricostruzione della storia dei ghiacciai.

ABSTRACT: Glacier fluctuation and climatic signal reconstruction by means of arboreal vegetation

Arboreal vegetation and tree rings today represents a precious instrument to study the historical and recent glacial fluctuations and for analysing the climatic signal. The global warming is inducing changes in high mountain environment. The more evident effect is represented by glacier shrinking and by the consequent widening

(*) Dipartimento di Scienze della Terra A. Desio, Università degli Studi di Milano - Comitato Glaciologico Italiano manuela.pelfini@unimi.it
of proglacial areas followed by tree colonization and tree limit raising. The increase of supraglacial debris cover permits vegetation growing on the glacier surface. Tree rings from supraglacial plants represent an important record of data for studying surface glacier movements. Moreover, tree ring series conserve the climatic signal. Stamps and trunks buried in glacier deposits represent an useful instrument to reconstruct glacier history.

INTRODUZIONE

Le variazioni climatiche recenti hanno portato ad una profonda trasformazione dell’ambiente d’alta montagna che sta subendo una rapida e intensa riduzione delle masse glaciali. In risposta al riscaldamento in atto in Europa a partire dalla Piccola Età Glaciale, conclusasi verso la metà del 19\(^{\circ}\) secolo, i ghiacciai hanno infatti registrato una perdita pari a circa il 40% della loro superficie e più del 50% del loro volume. Il paesaggio glaciale dell’alta montagna alpina si sta quindi progressivamente trasformando in un paesaggio periglaciale, caratterizzato da vaste distese di detrito, nuovo habitat per le comunità animali e vegetali. Accanto al ritiro glaciale, vi è infatti la risposta del sistema biologico, estremamente complessa ma molto significativa. La vegetazione ad esempio costituisce un indicatore molto sensibile delle variazioni climatiche e dei suoi impatti sull’ambiente montano.

IL RITIRO GLACIALE E L’INGRESSO DELLA VEGETAZIONE ARBOREA

Le aree proglaciali lasciate libere dal ritiro delle lingue glaciali tornano ad essere areale di conquista della vegetazione arborea che via via si spinge verso le fronti attuali (fig. 1). Conoscendo l’età delle piante ubicate nelle aree prospicienti le fronti glaciali e la data di esposizione del substrato, è possibile ricavare il tempo di insediamento della vegetazione arborea. Quest’ultimo era stato stimato pari a circa 10-20 anni per le Alpi settentrionali e 15-20 anni per alcune aree delle Alpi italiane; le ricerche più recenti mirano a verificare eventuali variazioni delle velocità di insediamento della vegetazione arborea, a conferma del fenomeno dell’accelerazione dei processi naturali nell’ambiente d’alta montagna in risposta al riscaldamento climatico. Le conifere mostrano effettivamente una generale progressiva riduzione del tempo di insediamento nelle aree neodeglaciate avvicinandosi all’attuale fronte glaciale, accelerazione controllata tuttavia da fattori morfologici, quali ad esempio versanti instabili, soggetti a movimenti franosi (Pelfini, dati inediti). Nella Valle dei Forni (Valtellina, SO) le piante arboree ormai si spingono sino in prossimità della

FIG. 1 - Area proglaciale del Ghiacciaio Grande di Verra. In secondo piano è visibile la colonizzazione arborea della zona lasciata libera dal ghiaccio compresa tra le morene laterali (Foto Anselmi, 2007).

IL RISCALDAMENTO CLIMATICO E L’INNALZAMENTO DEI LIMITI ALTITUDINALI DEGLI ALBERI

Lungo i versanti è possibile osservare un progressivo innalzamento dei limiti altitudinali della vegetazione arborea (fig. 2). In ambiente alpino è particolarmente significativa la cosiddetta treeline, cioè la quota più elevata a cui è possibile osservare forme di vita arboree. Questa tende ad abbassarsi in corrispondenza dei periodi di recrudescenza climatica e, viceversa, ad innalzarsi durante le fasi di riscaldamento. Le posizioni dei limiti altitudinali rappresentano pertanto dei veri e propri indicatori delle variazioni climatiche passate ed in atto. Il fattore di controllo è rappresentato dalla temperatura durante la stagione vegetativa anche se recentemente viene considerato molto importante il ruolo del regime delle precipitazioni. Queste ultime possono costituire infatti un fattore di stress, come si può verificare ad esem-
pio durante i periodi siccitosi. La complessità del sistema comporta risposte diverse della vegetazione ai fattori climatici forzanti. La velocità e l’intensità della risposta possono inoltre variare sensibilmente nello spazio; i limiti attuali possono quindi rispecchiare sia il clima attuale sia situazioni del passato. Il grado di continentalità del clima può inoltre influire anche sulla distribuzione delle specie. Un recente studio condotto sulle Alpi centrali italiane, relativamente piante a portamento arboreo ed arbustivo, ha rivelato come il limite superiore e la dinamica della treeline siano fortemente influenzati anche da limiti morfologici (es. affioramenti in roccia) ed antropici (es. pascolamento, ecc.). A titolo di esempio la Valfurva (nel settore lombardo del Gruppo Ortles-Cevedale) mostra limiti più elevati sia per la foresta sia per le singole specie, rispetto alle aree investigate nelle Alpi Orobie.

FIG. 2 - Versante destro della Valle dei Forni nel mese di Luglio 2007. La presenza della neve permette di evidenziare il limite superiore della vegetazione arborea (Foto Pelfini, 2007)
Il segnale climatico nelle cronologie delle conifere come base per gli studi dendroglaciologici

Oltre ad un comportamento dinamico la vegetazione arborea registra nelle sequenze degli anelli di accrescimento annuale il segnale climatico, tanto che l’analisi e l’elaborazione delle cronologie permettono la ricostruzione delle temperature e delle precipitazioni per i periodi precedenti le misure strumentali; in particolare le piante arboree in ambiente alpino registrano in modo evidente l’andamento delle temperature estive. Non si tratta di un’informazione diretta quale quella derivante dai dati termo-pluviometrici, quanto di un’informazione “filtrata” da organismi biologici e che va pertanto estratta e liberata dai rumori di fondo rappresentati dal trend di crescita e dai problemi legati all’autocorrelazione. La crescita annuale delle piante legnose alle latitudini caratterizzate dalla stagionalità è scandita infatti da anelli di crescita annuali, le cui caratteristiche morfologiche, chimiche e fisiche sono controllate sia da fattori esterni sia da fattori interni. Le caratteristiche degli anelli annuali (tree rings) sono quindi in relazione alle condizioni di crescita della pianta (altitudine, suolo, substrato, esposizione, inclinazione del versante, luce) e ai fattori climatici (temperatura, precipitazioni, umidità, ecc.). L’albero reagisce immediatamente al variare dei parametri ambientali, producendo anelli di diverso spessore. Le fasi di recrudescenza climatica vengono in genere registrate mediante la produzione di una serie di anelli sottili, rappresentati da picchi ed andamenti negativi nelle curve dendrocronologiche; in caso di anni a clima estremo la produzione di legno può mancare (anello mancante).

Dallo spessore dei singoli anelli in sequenza derivano le curve di crescita, che vengono successivamente elaborate (filtrate e mediate dopo un processo di datazione incrociata) al fine di costruire le cosiddette cronologie di riferimento, le quali conservano al loro interno la documentazione relativa alla variabilità climatica (Schweingruber, 1988; 1996; Fritts, 1976). Se si analizza la rete dendroclimatica costruita per il gruppo Ortles-Cevedale da Leonelli & alii (2009), si osserva come tutte le cronologie (curve medie riferite a più siti di campionamento ubicati in valli diverse) mostrino il medesimo segnale climatico nel corso del tempo, sebbene con intensità differenti (fig. 3); sono particolarmente evidenti l’intervallo negativo intorno agli anni ’20 del 19° secolo, che corrisponde al culmine della Piccola Età Glaciale (PEG) e la pulsazione fredda degli anni ’80 del 20° secolo, modesta, ma riconosciuta a scala globale. Meno evidente è invece il riscaldamento in atto.
FIG. 3 - Le cronologie di pino cembro della rete dendroclimatica del Gruppo Ortles-Cevedale (elaborazione e realizzazione Leonelli)

Solo in alcune cronologie vi è un incremento degli spessori annuali, come ci si aspetterebbe; altre sembrano dare informazioni che cambiano, probabilmente in relazione a situazioni locali. Le risposte della vegetazione sono anche funzione dell’età delle pianta, della specie, delle condizioni edafiche; esse possono inoltre cambiare nel corso del tempo nonostante la crescita alle alte quote sia limitata principalmente dalle temperature. Ne deriva pertanto una difficile interpretazione del segnale ed una ancor più complessa interpretazione delle correlazioni con altri proxi data quali quelli glaciologici.

Nel Gruppo Ortles-Cevedale ad esempio studi condotti sul pino cembro (Pinus cembra L.) e sull’abete rosso (Picea abies Karst.) mostrano come entrambe le specie si correlino bene con i dati climatici. Eventi estremi quali le alte temperature dell’estate 2003, la più calda degli ultimi 500 anni, responsabili di una fortissima contrazione glaciale, hanno però indotto risposte differenti nella vegetazione arborea. A titolo di esempio, due popolazioni di abete rosso ubicate rispettivamente a 2050 m e 1620 m in Val Trafoi (BZ) evidenziano nelle rispettive cronologie una forte divergenza in corrispondenza dell’anomalia termica del 2003; ciò indica da un lato la grande sensibilità al clima delle conifere e dall’altro come siano sufficienti poco più di 400
m di dislivello per indurre segnali climatici differenti, in questo caso da imputare probabilmente alle precipitazioni estive; nel 2003 infatti, i siti ad alta quota della Val Trafoi sono stati favoriti da una stagione vegetativa più lunga e più calda mentre quelli a bassa quota hanno subito condizioni di stress idrico delle quali conservano traccia anche l’anno successivo (Leonelli & Pelfini 2008). Nel caso dei ghiacciai invece l’anomalia termica del 2003 ha provocato una generale e drammatica perdita di massa. Ne consegue che lo stesso input climatico in alta montagna può indurre reazioni opposte e non proporzionali nel sistema biologico, rappresentato dalla vegetazione arborea, ed in quello fisico, rappresentato dai ghiacciai. L’andamento delle cronologie rappresenta un punto di partenza sia per studi dendroclimatici sia per studi dendroglaciologici. Le cronologie di riferimento rappresentano infatti la serie di dati indispensabili sia per correlazioni dirette con i parametri glaciologici (bilanci di massa, variazioni frontali) (Leonelli & alii, 2007; 2009), sia per datare anomalie di crescita in piante disturbate dalla dinamica glaciale attuale e del passato.

LA VEGETAZIONE ARBOREA EPIGLACIALE PER LO STUDIO DELLA DINAMICA DEI DEBRIS COVERED GLACIERS

I ghiacciai alpini, oltre ad essere caratterizzati da un sensibile ritiro delle fronti glaciali, stanno sperimentando un progressivo aumento della copertura detritica superficiale. Il materiale che cade nella zona di accumulo viene progressivamente sepolto dalla neve e si sposta verso valle, in accordo al movimento glaciale. Verso la fronte il detrito riaffiora, là dove dominano i processi di ablazione (prevalentemente di fusione). L’accentuarsi di questi ultimi sta portando alla progressiva trasformazione di numerosi “ghiacciai bianchi” (clean glaciers o debris free glaciers) in “ghiacciai neri” (debris covered glaciers). La copertura detritica, oltre a ridurre l’ablazione, permette alla vegetazione di colonizzare la superficie glaciale; si tratta inizialmente di piante erbacee ed arbustive ma dove lo spessore è consistente e sufficientemente stabile, anche la vegetazione arborea può insediarsi. Le piante epiglaciali si muovono quindi progressivamente verso valle seguendo il flusso glaciale, fino a che, raggiunta la fronte, cadono nell’area proglaciale. A volte il loro percorso viene interrotto in anticipo a causa della comparsa di “falesie” di ghiaccio lungo i margini della lingua glaciale. Si tratta di pareti di ghiaccio scoperto, caratterizzate da un aumento della fusione e da un conseguente arretramento delle stesse. Sono le zone dove i debris covered glaciers perdono principalmente massa, coinvolgendo la vegetazione epiglacial che si trova in prossimità della scarpata. Ne deriva così la perdita di numerosi individui ed un tempo di vita degli alberi
condizionato dalla velocità superficiale del ghiacciaio. Questo è quanto è stato osservato sul Ghiacciaio del Miage, forse il più rappresentativo debris covered glacier italiano, nel Gruppo del Monte Bianco e l’unico ghiacciaio italiano a possedere una copertura arborea continua e ben sviluppata sulla porzione inferiore della lingua. Qui le piante arboree epiglaciali più vecchie sino ad ora individuate, hanno poco più di 60 anelli.

La parte terminale del Miage, dalla caratteristica forma a tenaglia, presenta una morfologia superficiale caratterizzata da ondulazioni, depressioni e solchi dovuti a processi di ablazione differenziale. Lo sviluppo della vegetazione arborea, in prevalenza larici ed abeti rossi è tuttavia condizionato dalle caratteristiche del detrito (spessore e granulometria) nonché dall’insieme dei movimenti superficiali del ghiaccio e della copertura, intesi sia come spostamenti verso valle sia come sollevamenti ed abbassamenti della superficie (Fig. 4).

FIG. 4 - Il Ghiacciaio del Miage (Val Veny, AO). Sono evidenti i lobi frontali. L’asterisco indica l’ ubicazione della falesia di ghiaccio visibile durante le estati 2004 e 2005 lungo il margine interno del lobo meridionale. In alto a destra e in basso a sinistra alcuni esemplari di piante epiglaciali.
Gli alberi presentano spesso fusti sciabolati quale risposta ad una continua deviazione dalla verticale nonché forme contorte ed “avvitate”, che evidenziano i continui movimenti del substrato. Le sollecitazioni a cui le piante sono sottoposte vengono registrate anche nelle caratteristiche degli anelli di accrescimento. Questi ultimi diventano pertanto preziosi archivi di dati relativamente ai movimenti superficiali del ghiacciaio. Tra i segnali più utilizzati per datare tali movimenti vi sono il legno di compressione, legno caratteristico che la pianta forma nel tentativo di recuperare la verticalità (l’anno di inizio di produzione del legno di compressione corrisponde all’anno in cui la pianta reagisce al movimento del substrato), gli anelli eccentrici e le anomalie di crescita. L’analisi dei “disturbi di crescita” presentati dalle piante epiglaciali, identificati mediante confronto visivo e statistico con gli andamenti anulari delle piante limitrophe, ha permesso di identificare i periodi in cui il ghiacciaio ha subito movimenti superficiali significativi nonché di localizzare gli stessi. In particolare è stato possibile riconoscere ed analizzare il passaggio di una delle cosiddette “onde cinematiche”, deformazioni nel ghiacciaio legate al trasferimento di massa, che si manifestano come rigonfiamenti e successivi abbassamenti della superficie glaciale, del detrito e della vegetazione arborea soprastante. Le analisi dendroglaciologiche hanno permesso inoltre di documentare come l’ultimo episodio si sia realizzato con intensità e tempi differenti nei due lobi del Miage. La vegetazione arborea epiglaciale è quindi in grado di fornire una precisa documentazione dei movimenti superficiali verificatisi nel recente passato relativamente ai periodi non coperti da misure glaciologiche strumentali (Pelfini & alii, 2007).

LA VEGETAZIONE ARBOREA E LA RICOSTRUZIONE DELLA STORIA GLACIALE

La vegetazione arborea è stata ampiamente utilizzata per la ricostruzione della storia glaciale olocenica. Durante le fasi di avanzata della Piccola Età Glaciale, le lingue glaciali possono aver invaso le aree a bosco, danneggiando o travolgendo la vegetazione presente; i resti delle piante abbattute possono conservarsi, sepolti nel detrito glaciale ed essere utilizzati per la datazione delle avanzate glaciali corrispondenti. Gli alberi ubicati al margine della lingua possono altresì essere danneggiati dalla pressione del ghiaccio glaciale; la compressione delle radici provoca infatti la formazione di anelli particolarmente sottili, fenomeno che perdura fino al ritiro del ghiaccio o alla morte dell’albero. La durata dell’intervallo in cui si osserva un crescita ridotta indica la data di “arrivo” del margine glaciale ed eventualmente il tempo minimo di permanenza. Analogamente la datazione del legno di com-
pressione e/o delle cicatrici osservabili in piante sopravvissute consente di individuare l’arrivo del ghiaccio con la precisione dell’anno. Un esempio di analisi dei danni inflitti alla vegetazione prospiciente il margine della lingua glaciale è rappresentato dal Ghiacciaio Grande di Verra (AO) dove è stato possibile ricostruire in dettaglio sia la fase di progresso, dalla fine del 1700 in poi, sia la fase di modesto regresso e di nuova avanzata culminata intorno alla metà del 1800 (Pelfini, 1999). Esempi di danni diretti a piante arboree sono oggi rari e limitati a casi di surging glaciers.

I ceppi ed i tronchi sepolti nel till possono riemergere in diversi contesti morfologici. Nel caso vengano ritrovati all’interno delle morene tronchi non radicati non è possibile ottenere informazioni precise in quanto essi potrebbero essere stati abbattuti in tempi diversi, anche da processi di versante, per poi essere trasportati dal ghiacciaio (fig. 5). Al contrario tronchi in situ documentano, attraverso la loro data di morte, l’arrivo del ghiacciaio in una posizione precisa; se questa coincide con una morena frontale si può dedurre la data di messa in posto della morena stessa; se invece i ceppi sono inglobati nella morena di fondo, essi forniscono solamente indicazioni circa “la data di passaggio” del ghiacciaio.

FIG. 5 - Tronco sepolto entro la morena laterale destra del Ghiaccio del Madaccio (BZ) (foto Pelfini, 2006)
Le informazioni ricavate mediante indagini sulla vegetazione arborea limitrofa ai ghiacciai hanno ampiamente contribuito alla ricostruzione della storia glaciale recente sulle Alpi, nonché delle fasi di recrudescenza climatica correlate. Per quanto riguarda il territorio italiano le ricerche dendroglaciologiche hanno fatto da supporto alle indagini classiche di geomorfologia glaciale, permettendo a volte di identificare avanzate precedenti il culmine della Piccola Età Glaciale, anche dove le evidenze morfologiche sul terreno sono state cancellate dalle avanzate glaciali di maggiore entità. In questi casi il ritrovamento di resti lignei permette di ipotizzarne l’esistenza, come in Val Ventina, sul versante settentrionale del Monte Disgrazia (SO), dove un ceppo di larice ancora in situ ubicato tra la morena olocenica più esterna, attribuita al XVII secolo, e quella retrostante ha consentito di proporre anche una data più antica (XII secolo) per la massima avanzata olocenica nel caso in cui il ceppo sia germinato dopo la messa in posto della morena più esterna, dato purtroppo non verificabile (Pelfini & Smiraglia, 1994). In altri casi porzioni di morena laterale, parzialmente ricoperti dalle morene deposite al culmine della PEG, permettono di identificare avanzate precedenti e di determinarne l’età, utilizzando l’età minima delle piante cresciute sopra di esse e l’andamento delle cronologie di riferimento relative ad alberi cresciuti in prossimità o sulle morene laterali. Ne è un esempio la Val Trafoi, nel Gruppo Ortles-Cevedale dove per il Ghiacciaio del Maddacio è stata ipotizzata una fase di progresso nel primo decennio del 1600, in fase con l’avanzata di altri ghiacciai alpini (Pelfini, 2003; Grove, 1988).

ACCRESIMENTO ARBOREO E BILANCI DI MASSA

Il clima è un fattore dominante nella guida dei processi biologici e di quelli geomorfologici, specie ad alta quota; ne consegue che sia la crescita arborea annuale sia i bilanci di massa dei ghiacciai possono essere considerati tra gli indicatori più sensibili delle variazioni climatiche. Entrambi i sistemi forniscono informazioni sulla variabilità climatica anche se a scale temporali differenti e con continuità diverse: i dati glaciologici risalgono solo all’inizio del secolo scorso e sono disponibili solo per una serie di ghiacciai mentre i dati dendrocronologici forniscono informazioni a scansione annuale e relativamente a periodi di secoli e/o millenni. I bilanci di massa annuali (cioè la differenza tra accumuli nevosi e perdite per ablatione) vengono elaborati raccogliendo misure dirette sul terreno. Le variazioni di bilancio di massa sono le prime modifiche che intervengono nei ghiacciai come risposta alle sollecitazioni climatiche; questi cambiamenti si traducono solo successivamente in spostamenti della linea di equilibrio e poi con un certo ritardo, della posizione fron-
tale. Partendo da dati dendrocronologici alcuni Autori hanno provato a ricostruire i valori di bilanci di massa per i periodi precedenti le misure strumentali (Nicolussi, 1995; Laroque & Smith, 2005). L’immediata risposta della vegetazione arborea agli input climatici, premessa fondamentale per la ricostruzione delle temperature e dei dati di precipitazione, può essere utilizzata pertanto anche come punto di partenza per la correlazione con i dati di bilancio di massa. L’obiettivo è quello di trovare una funzione di risposta tra le due serie di dati da utilizzare successivamente per le ricostruzioni, a partire dalle cronologie. Le ricerche condotte utilizzando la rete dendroclimatica relativa al Gruppo Ortles-Cevedale hanno evidenziato una buona correlazione tra le cronologie del pino cembro e i dati di bilancio di massa; l’andamento cioè delle serie di bilanci di massa dei ghiacciai campione analizzati e delle cronologie di cembro appare sincrono (il segnale è ovviamente in opposizione di fase in quanto condizioni climatiche “calde” inducono bilanci negativi nei ghiacciai e positivi nelle piante) (Leonelli & ali, 2009). Va ricordato che le correlazioni non vengono effettuate tra dati diretti bensì tra dati filtrati da sistemi naturali; tutto ciò potrebbe costituire un limite per le ricostruzioni dei bilanci di massa che includono i dati dei più recenti studi.

CONCLUSIONI

Piante e ghiacciai sono elementi cardine per la lettura dell’evoluzione del paesaggio e del clima in alta montagna sebbene presentino peculiarità molto diverse. I ghiacciai, specie per il passato più remoto, offrono dati puntuali ma sporadici, che documentano risposte avvenute con un certo ritardo rispetto all’impulso climatico, mentre le piante conservano una documentazione con scansione annuale del medesimo input, costruendo la base per la datazione delle fasi glaciali. In particolare il reperimento di resti lignei sepolti nei depositi glaciali, fornisce preziose informazioni sia sui periodi di recrudescenza climatica associati al progresso delle fronti glaciali sia sulla storia glaciale recente. L’età stessa delle piante ubicate sulle morene rappresenta un utile strumento per l’attribuzione di un’età minima ai depositi glaciali. L’operazione di cross-datazione è fondamentale per poter attribuire un’età calendario ai resti sepolti o alle piante epiglaciali o ancora alle anomalie di crescita; ciò implica la costruzione di cronologie di riferimento. Queste ultime sono fondamentali per l’estrapolazione del segnale climatico, motore comune a tutti i sistemi naturali dell’ambiente alpino. Ancora il comportamento dinamico della vegetazione arborea, le variazioni dei suoi limiti altitudinali, la ricolonizzazione delle aree pro glaciali e il segnale climatico contenuto nelle cronologie rappresentano preziose fonti di dati per lo studio delle risposte dei sistemi biologici al global change.
Da ciò deriva come le analisi dendrocronologiche apportino una consistente fonte di dati utili non solo alla glaciologia ed alla morfologia glaciale, ma anche a numerose discipline che si occupano dello studio dell’ambiente d’alta montagna.

BIBLIOGRAFIA

LAROQUE S.J. & SMITH D.J. (2005) –Little Ice Age proxi glacier mass balance records reconstructed from tree rings in the Mt. Waddington area, British Columbia Coast Mountains, Canada. The Holocene, 15, 748-757

DANIELE BOCCHIOLA (*), EMANUELA BIANCHI JANETTI (*) & RENZO ROSSO (*)

GHIACCIAI E FIUMI, PROBLEMI E POTENZIALITÀ DI UN RAPPORTO IN RAPIDA EVOLUZIONE.
IL CASO DEL “GHIACCIAIO NERO” DEL VENEROCOLO (BS)

RIASSUNTO: BOCCHIOLA D., BIANCHI JANETTI E. & ROSSO R., Ghiacciai e fiumi, problemi e potenzialità di un rapporto in rapida evoluzione. Il caso del “ghiacciaio nero” del Venerocolo (Bs)

La presenza del cambiamento climatico introduce una più rapida dinamica evolutiva del rapporto tra aree nivoglaciali ed alvei fluviali. Studi approfonditi devono quindi essere dedicati a svelare il complesso meccanismo di interazione tra le dinamiche del cambio climatico, che regolano tanto i fattori di alimentazione nivopluviali, quanto le forzanti energetiche atte a guidare il ciclo idrologico, e la risposta idrologica dei suoli, che condiziona la dinamica delle acque superficiali. Una volta determinati ed opportunamente modellati tali processi tramite schemi di tipo fisico matematico, è possibile ipotizzare scenari di cambiamento futuro degli ingressi climatici e la conseguente risposta del sistema bacino idrologico a tali scenari. Nel presente studio, condotto nell’ambito del Progetto CARIPANDA, si mostra un approccio a tale problematica per un interessante caso di studio, relativo al Parco dell’Adamello (PANDA) Lombardo (BS). Le acque della zona sono utilizzate dalle centrali idroelettriche della concessionaria ENEL, che ha fornito i dati per lo studio. In primo luogo, si costruisce un modello idrologico in grado di simulare la dinamica di fusione nivoglacial e la relativa risposta idrologica, per una particolare

(*) Dipartimento IIAR, Sez. CiMI, Politecnico di Milano, p.za Leonardo da Vinci 32, 20133 Milano, Italy. daniele.bocchiola@polimi.it
Lo studio qui presentato si inquadra nell’ambito del progetto di ricerca CARIPANDA (http://www.parcoadamello.it/files/Progetto%20CARIPANDA.pdf.
Si ringrazia ENEL S.p.A., nella persona dell’Ing. Giorgio Galeati, per aver messo a disposizione la base dati meteorologica. Si ringrazia il gruppo di Glaciologia dell’università Statale di Milano, Dip. Scienza della Terra, UNIMI-SCI, per le informazioni relative al ghiacciaio dell’Adamello. Si ringrazia ARPA Lombardia, nella persona dell’Ing. Dario Bellingeri, per aver messo a disposizione le immagini elaborate MODIS®. Si ringrazia Gianluca Lentini della facoltà di Fisica dell’Università di Milano, per aver fornito i dati del modello climatico HadCm3. Lo studio qui presentato si inquadra nel progetto di ricerca CARIPANDA, Cambio climatico e Risorsa Idrica nel Parco Naturale Dell’Adamello, finanziato dalla Fondazione Cariplo, (Bando 2006, Gestione sostenibile delle acque). Lo studio è parzialmente finanziato tramite una borsa di studio dal progetto AWARE (contratto EC 012257).
zona del parco, che comprende il ghiacciaio nero del Venerocolo e il Ghiacciaio dell’Avio Centrale. Utilizzando poi i risultati di precedenti studi, che definiscono le tendenze di cambio climatico per il Parco, in congiunzione con le proiezioni fornite da un modello climatico di letteratura, si realizzano semplici simulazioni di scenario di deflusso per anni futuri. Tramite il modello detto, si realizzano simulazioni di scenario idrologico. Tali scenari, per quanto preliminari e semplificativi, forniscono una prima indicazione sullo sviluppo futuro delle caratteristiche idrologiche dell’area in esame.

ABSTRACT: BOCCHIOLA D., BIANCHI JANETTI E. & ROSSO R., Glaciers and rivers, issues and potential of a rapidly evolution relationship. The case study of the debris covered Venerocolo glacier

Climate change results in tighter relationship between the dynamics of glacierized areas and river channels. Scientists need to shed light on the interaction between climate change and hydrological soil response. Here, we report of a study carried out under the framework of the CARIPANDA project, inside the Adamello Lombardo Park (BS). Local water bodies are exploited for hydroelectric power production by ENEL company of Italy, lending data for the study. First, we built a hydrological model to simulate the snow melt dynamics and the hydrological response therein, for the particular area of the debris covered Venerocolo glacier. Using the results of former studies indicating local climate change trends and climate projections as provided by a literature GCM model to feed the hydrological model, we built hydrological scenario simulations until 2050. These simulations, albeit preliminary, provide a first “what if” indication concerning the fore coming hydrological conditions of the examined area.
INTRODUZIONE

La precipitazione pluvio-nivale riveste una grande rilevanza nel bilancio idrologico dei bacini alpini. Mentre la precipitazione sotto forma liquida influenza la disponibilità idrica sul breve periodo durante le stagioni primaverili ed autunnali, la neve si accumula durante la stagione invernale e costituisce una riserva indispensabile per alimentare i deflussi tardo primaverili ed estivi che, in tale periodo, costituiscono la principale fonte d’approvvigionamento per gli ecosistemi fluviali e peri-fluviali per gli usi idropotabili, irrigui ed industriali (Coughlan & Running, 1997; McGlynn & alii, 1999; Maiolini & Lencioni, 2001; Medagliani & alii, 2007). La valutazione dell’accumulo nivale e del suo periodo di fusione rappresenta importanti condizioni iniziali per i modelli idrologici di deflusso da fusione (Swamy & Brivio, 1996; Donald & alii, 1995; Coughlan & Running, 1997; Ranzi & alii, 1999; Soncini Sessa & Volta, 2004; Martinelli & alii, 2004; Bocchiola & Rosso, 2007; Simaityte & alii, 2008). Per quanto riguarda le aree glaciali, il bilancio di massa dei ghiacciai è controllato, da un lato, dalla deposizione sottoforma nivale, che ne costituisce l’input primario (Jansson & alii, 2003) e dalla ridistribuzione ad opera dei fenomeni gravitativi e di vento (Jansson, 1999) e, dall’altro, dal bilancio energetico della massa glaciale, che influenza fusione ed evaporazione (Singh & alii, 2000; Lehning & alii, 2002), ulteriormente complicato dalla presenza di detrito supragliale, i.e. per i “ghiacciai neri” (Mattson & Gardner, 1989; Kirkbride & Warren, 1999; Kirkbride & Dugmore, 2003; Diolaiuti & alii, 2005; Mihalcea & alii, 2006; Brock & alii, 2007; Mihalcea & alii, 2008a; Mihalcea & alii, 2008b). La presenza del cambiamento climatico influenza il bilancio nivo-glaciale (Rohrer & alii, 1994; Singh & Kumar, 1997; Schneeberger & alii, 2003) e la dinamica dei deflussi primaverili (Braun & alii, 2000) tramite variazioni sia nell’accumulo (i.e. la precipitazione nivale, Laternser & Schneebeli, 2003) sia nel bilancio energetico (i.e. fusione ed evaporazione, p.es. attraverso la temperatura). Per esempio, Chen & Ohmura (1990) hanno stimato una perdita media dei ghiacciai alpini di 0.57 Km³/anno nel periodo 1870-1970. Sembra quindi interessante proporre uno studio sulla dinamica temporale della precipitazione nivo-pluviale e della temperatura per un’importante area glaciale nelle Alpi Lombarde quale il Parco Naturale dell’Adamello. Il ciclo idrologico in bacini glaciali è stato studiato in diversi modi (Jansson & alii, 2003). La fusione di neve e ghiaccio è governata dal bilancio energetico (Lehning & alii, 2002). A causa della difficoltà di misurare tutti i parametri necessari per implementare un modello di bilancio energetico vengono spesso utilizzati modelli in cui la temperatura è considerata l’unico termine da cui dipende la fusione (Singh & alii, 2000). In questo lavoro si è scelto di adottare questo tipo di modello. Il complesso meccanismo di generazione e propagazione di deflusso in piccoli bacini può essere modellato usando la teoria...
dei serbatoi lineari, in particolare se si è interessati ad una stima concentrata del de-
flusso (Hannah & Gurnell, 2001). Si propone qui un semplice approccio modelli-
stico basato su tali concetti, atto a descrivere il meccanismo di risposta idrologica
del bacino studiato. Si realizzano poi semplici simulazioni di scenario climatico ba-
sate sui risultati di lavori precedenti (Gorni & alii, 2008; Bianchi Janetti & alii, 2008),
in congiunzione con le proiezioni fornite da un modello di letteratura (HadCM3,
Gordon & alii, 2000), che, processate tramite il modello idrologico qui calibrato,
vengono tradotte in simulazioni di scenario idrologico.

IL CASO DI STUDIO

Il Parco Adamello

Il Parco dell’Adamello Lombardo (fig. 1) si estende per 510 km² sul versante sinistro idrografico della Valle Camonica, dal Passo del Tonale a quello di Crocedomini e comprende il versante lombardo del gruppo dell’Adamello. Il limite orientale del Parco coincide con il confine regionale tra Lombardia e Trentino, mentre ad occidente il Parco si mantiene poco al di sopra della sponda sinistra del fiume Oglio. Il Parco regionale interessa una superficie complessiva di circa 290 Km² (60% del totale), più influenzata dalla presenza dell’uomo. Il Parco naturale ricopre circa 217 Km² (40% del totale), ossia gli ambiti territoriali più naturali, incluso il Ghiacciaio dell’Adamello.

Lo sfruttamento delle acque del bacino dell’Oglio ebbe inizio fin dai primissimi anni del secolo scorso, con la costruzione, da parte della Società Generale Elettrica dell’Adamello, della diga del Lago d’Arno, ed in seguito delle dighe dell’Avio, del Salarino e del Baitone, ultime negli anni 1928-30. In seguito, nei primi anni ’50, vennero costruite le dighe del Lago Benedetto e quindi quelle del Pantano e del Venerocolo. Il Parco dell’Adamello ospita il Ghiacciaio Occidentale di Pisgana, i ghiacciai del Venerocolo e dell’Avio, il Ghiacciaio di Miller superiore, il Ghiacciaio del Corno Salarino, la Vedretta di Salarino, la Vedretta di Adamè. L’Adamello rappresenta nel solo settore lombardo il 39% dell’intera risorsa glaciale regionale. Nel Catasto Lombardo (SIT Regione Lombardia) il volume di ghiaccio complessivo rappresentato dal gruppo Adamello è pari a circa 2 Km³ di ghiaccio, pari ad un equivalente in acqua di 1.86 Km³. In media nell’ultimo decennio si è stimato che i ghiacciai del settore lombardo del gruppo abbiano rilasciato circa 22 milioni di m³ di acqua all’anno, che nella sola estate 2003 sono saliti a poco meno di 40 milioni di m³ a seguito dell’intensa ablazione avvenuta. Poiché la precipitazione nevosa rappresenta il meccanismo predominante di ricarica degli apparati glaciali, sembra di interesse uno studio dell’apporto idrico sotto tale forma, atto a definirne le tendenze evolutive.
L’area del Parco Adamello è caratterizzata dal mesoclima alpino, contraddistinto da temperature invernali rigide e temperature estive poco elevate, intensa radiazione solare ed elevata frequenza di giorni sereni soprattutto in inverno. Una elevata ventosità è garantita tanto dalle brezze di monte e di valle quanto dall’interazione del rilievo con la circolazione generale. Le precipitazioni, che sono abbondanti sui contrafforti esterni delle Alpi, si riducono sensibilmente nella parte centrale del massiccio, dando luogo ad un regime climatico endoalpino, contraddistinto da minor nuvolosità e da relativa scarsità di precipitazioni, con massimi che raggiungono difficilmente 1000 mma-1. La neve cade spesso, anche se raramente in quantità abbondante, e tende a resistere per lunghi periodi, soprattutto nelle zone più fredde verso Ponte di Legno, a causa dell’aria fredda che discende dal Ghiacciaio del Pyszgana e delle precipitazioni che arrivano dalla zona del Tonale. Le precipitazioni nevose nei mesi da ottobre a maggio rivestono, assieme alla temperatura nei mesi di ablazione, un ruolo fondamentale nello stato di conservazione delle masse glaciali. A fine stagione di abla- zione, solitamente a settembre, la neve residua sul bacino di accumulo del ghiacciaio va incontro a varie trasformazioni che portano ad un aumento della densità della stessa e, dopo alcuni anni, alla sua trasformazione in ghiaccio. Lo studio qui presentato si inquadra nell’ambito del progetto di ricerca CARIPANDA, che ha come fine la valutazione di scenari di distribuzione della risorsa idrica e del bilancio idrologico plu-vio-nivo-glaciale del parco, su un orizzonte temporale di cinquant’anni circa. In tale
ottica si presenta qui un’analisi sull’entità e le modifiche delle precipitazioni nell’area del parco, poiché esse costituiscono tanto una risorsa per gli usi civili e per l’ecosistema, quanto una fonte di accumulo per le aree glaciali.

Il Ghiacciaio del Venerocolo

L’area di studio è il bacino afferente al lago artificiale Pantano d’Avio, che si trova nel lato ovest del Parco le cui acque finiscono nel fiume Oglio (fig. 2). Il bacino, caratterizzato da un’area di 10.6 km², si estende da una quota minima di 2300 m a una massima di 3500 m ed è caratterizzato da scarsa vegetazione, solo arbusti e licheni e un terreno roccioso. Circa un terzo del bacino è coperto dai ghiacciai di Venerocolo e di Avio. Le acque di questo bacino sono sfruttate per la produzione di energia idroelettrica da ENEL nella centrale di Pantano. Questo è il primo impianto di un sistema che utilizza tutte le acque della valle. Il principale serbatoio di stoccaggio per l’acqua è il lago Pantano d’Avio. Un secondo serbatoio, lago Venerocolo, raccoglie le acque del bacino a monte e quelle provenienti dalla Vedretta di Venerocolo tramite una presa acqua.

Pertanto, il sistema è costituito da tre bacini. Da nord a sud si trova il bacino Venerocolo, 4,99 km² di superficie, che comprende il lago Venerocolo e non presenta superfici glaciali, il bacino della Vedretta dei Frati che ha una superficie di 3,25 km², con 1,34 km² del ghiacciaio parzialmente coperto da detrito, il bacino del serbatoio Pantano che ha una superficie di 2,44 km², con un ghiacciaio, l’Avio centrale, di 0,79 km².

FIG. 2 - Bacino del lago Pantano. Si evidenziano i sistemi di condotte e la direzione dei flussi idrici.
DATI E METODI

Base dati

I dati utilizzati in questo lavoro sono stati raccolti in parte dal personale ENEL e in parte durante una campagna di misurazione condotta congiuntamente dal personale del Politecnico di Milano e del Dipartimento Scienze della Terra dell’Università Statale di Milano nell’estate 2007. Per quanto riguarda la temperatura e le precipitazioni sono disponibili serie orarie presso le dighe di Pantano (2300 m) e Venerocolo (2500 m) per il periodo 2000/2007. I dati mancanti sono ricostruiti dalle serie giornaliere. Nelle stesse stazioni vengono raccolti dal personale ENEL dati di altezza di neve a frequenza giornaliera, a partire dal 1966. Tali dati vengono utilizzati come condizioni iniziali nel modello. Inoltre sono disponibili dal 1996 misure di altezza e densità del manto rivale, raccolte sempre dal personale ENEL, a cadenza mensile nel periodo di fusione (1 Febbraio, 1 Marzo, 1 Aprile, 15 Aprile, 1 Maggio e 1 Giugno), in tre stazioni nell’area considerata. Tali misure nel periodo 2000/2007 sono state utilizzate per la stima del fattore degree-hour e per la valutazione del gradiente di crescita della altezza di neve al suolo con la quota.

In aggiunta a questo database storico è stata condotta dal Gruppo di Glaciologia dell’Università degli Studi di Milano, in collaborazione con personale del Politecnico di Milano, una campagna di misure sul campo durante la stagione estiva 2007. Sono state posizionate 13 paline ablatometriche sulla lingua del Ghiacciaio Venerocolo, principalmente sulla parte coperta da detrito e una stazione micro-meteorologica automatica in prossimità della fronte glaciale. Misure di ablazione sono state effettuate durante l’intera stagione di fusione, da giugno 2007 a ottobre 2007 con cadenza mensile. Si sono effettuate inoltre misure puntuali dello spessore di detrito in più di 100 punti su un’area di circa 0.5 km². Tali misure sono state in seguito interpolate utilizzando Surface, uno strumento di analisi geostatistica di ArcGis, per ottenere una mappa spaziale.

La temperatura misurata alla stazione automatica è stata correlata con quella della stazione alla diga Venerocolo per stimarne un gradiente di decrescita con la quota. Le caratteristiche morfologiche del bacino, quali la distribuzione dell’area sottesa alle diverse quote e della superficie glaciale, sono desunte dalla C.T.R. scala 1:25.000 e dal DTM a risoluzione 20 m × 20 m.

Stime del deflusso in ingresso ai serbatoi di Pantano e Venerocolo sono state ottenute tramite flow routing inverso (Chow & alii, 1988; Bocchiola & Rosso, 2006) per il periodo 2000/2007 e utilizzate per validare le simulazioni del modello. Conoscendo la variazione dei livelli nei serbatoi e la portata uscente dal bacino, è possibile valutare, tramite l’equazione di continuità, la portata, o volume, entrante.
IL MODELLO IDROLOGICO

Il modello proposto ha due componenti principali: (1) un modello di stima dell’input di afflusso costituito da fusione del manto nivale e del ghiacciaio (che inizia a rilasciare acqua di fusione man mano che la linea delle nevi risale) e precipitazione liquida; (2) un modello idrologico concentrato di tipo serbatoi lineari per la valutazione del deflusso nella sezione di controllo. In Figura 3 si mostra lo schema del metodo utilizzato. La serie dei deflussi stimati ottenuta tramite flow routing è stata utilizzata per validare il modello nel periodo 18/04/2007-30/08/2007. Queste date sono state scelte perché il 18 Aprile rappresenta per il 2007 il giorno in cui si osserva il massimo di equivalente idrico nivale (EIN) (Martinelli & alii, 2004) alla quota minima del bacino e dopo il 30 Agosto il rilascio di acqua di fusione del ghiacciaio risulta poco significativo.

FIG. 3 - Rappresentazione schematica del metodo utilizzato.

Il metodo utilizzato per la stima dell’EIN fuso è espresso da:

\[M_s = D_s \cdot (T_a - T_0) \]

(1)

dove Ms è l’altezza di neve fusa in mm d’acqua equivalente (mm/unità di tempo), Ta è la temperatura dell’aria (°C), T0 è una temperatura soglia superata la quale inizia la fusione (considerata 0°C), Ds è il fattore di fusione della neve (mm/°C unità di tempo). Poiché il calcolo viene fatto a scala oraria DS viene chiamato ‘degree-hour
factor’. Il degree-hour viene stimato dalle misure dirette di altezza di neve e densità. In seguito ad una analisi preliminare, viene utilizzato un valore costante per tutta la stagione di fusione. Per considerare la variazione della temperatura con la quota il bacino viene diviso in 5 fasce, per ognuna delle quali si considera la temperatura relativa alla quota media. Si impone una condizione iniziale di altezza di EIN per ogni fascia (Ranzi & alii, 1999) e si fa fondere la quantità di EIN fornita con l’Eq. (1) fino a quando non c’è più neve al suolo. L’andamento temporale della snow line così ottenuta è stato verificato tramite confronto con immagini satellitare di copertura nivale MODIS, con risultati accettabili. Quando il manto nivale scompare interamente, incomincia la fusione del ghiaccio. Si considera lo stesso tipo di equazione:

\[M_{\text{si}} = D_{\text{i}} \cdot (T_a - T_0) \, , \]

(2)

In accordo con i dati di ablazione registrati sul campo si considera un \(D_{\text{i}} \) diverso per la porzione di ghiacciaio coperta da detrito e per quella a ghiaccio pulito (Mihalcea & alii, 2006; Mihalcea & alii, 2008b). Per avere un dato medio a scala di bacino da utilizzare come ingresso per il modello idrologico concentrato viene calcolata una media spaziale di altezza di neve e ghiaccio fuso pesata rispetto all’area coperta di neve o ghiaccio. Una volta calcolato l’input medio a scala di bacino in termini di precipitazione liquida, fusione di neve e ablazione dal ghiacciaio, questo viene inserito come ingresso nella seconda parte del modello. Si applica il metodo SCS-CN per separare l’infiltrazione dal deflusso superficiale. Il valore di CN viene valutato tramite l’analisi di idrogrammi a scala oraria di eventi di pioggia, in cui è possibile separare il deflusso di base dal deflusso netto. Il valore ottenuto, pari a CN = 89 è consistente con l’analisi della copertura del suolo condotta in studi precedenti per aree simili nel territorio lombardo (Rosso, 2004). La dispersione idrografica viene modellata tramite due serbatoi lineari di Nash in serie. Si considera un serbatoio per il deflusso superficiale e uno per il deflusso profondo. Le costanti di tempo sono valutate da caratteristiche geomorfologiche del bacino per il deflusso superficiale e calibrate con minimi quadrati dal confronto tra idrogrammi ricostruiti e simulati per la parte sub-superficiale. Viene quindi valutata l’efficienza del modello per il periodo 18/04/2007-30/08/2007 tramite un coefficiente volumetrico \(D_v \)

\[D_v = \frac{V_{\text{ric}} - V_{\text{sim}}}{V_{\text{sim}}} \cdot 100 \, , \]

(3)

dove il pedice sim si riferisce ai volumi simulati ed il pedice ric si riferisce ai volumi ricostruiti tramite flow routing inverso, nonché tramite l’indice di Nash-Sutcliffe.
con identico significato dei pedici. Il termine Qmedia indica il valor medio dei de-
flussi ricostruiti.

Simulazioni di scenario

Sulla base di precedenti studi condotti per la zona del Parco dell’Adamello (Gorni
& alii, 2008; Bianchi Janetti & alii, 2008), si sono qui ipotizzati alcuni possibili sce-
nari di cambio climatico. In tali studi sono state analizzate le serie storiche di pre-
cipitazioni, altezze nivali, Equivalente Idrico Nivale (EIN) e temperature relative ad
alcune delle stazioni nivo-meteorologiche gestite da ENEL Produzione per il pe-
riodo 1966-2007. Per individuare la presenza di una tendenza temporale si sono uti-
lizzati tre differenti metodi di analisi, la regressione lineare, il test di adattamento
per la media a finestra mobile ed il test statistico di Mann-Kendall. I risultati di tali
studi mostrano, in sintesi, un aumento dell’apporto di precipitazione liquida cu-
mulata Pcum con una tendenza più marcata a partire dall’inizio degli anni novanta.
L’analisi della copertura nivale media annua HS mostra una diminuzione di que-
st’ultima, anch’essa con un tendenza più marcatà in corrispondenza dei primi anni
ottanta. L’analisi della durata della copertura nevosa per soglie differenti (0, 5, 10
e 20 cm) mostra che nei decenni più recenti diminuisce il numero di giorni con un
manto nevoso di spessore consistente. Un comportamento analogo si riscontra per
il periodo di fine della copertura nevosa che, alla quota di circa 2000 m, da metà
maggio arretra fino a metà aprile per le soglie 5, 10 e 20 cm mentre rimane press-
soché stazionario per la soglia 0 cm. L’analisi sulle serie di temperatura mostra un
aumento delle Tmin e Tmax, più evidente per quest’ultima. L’aumento delle tem-
perature su base annuale è in effetti dovuto soprattutto all’aumento delle tempe-
rature nella stagione primaverile. Le temperature autunnali invece subiscono una
crescita meno marcata, che non provoca forti variazioni nel periodo di inizio delle
nevicate. Le maggiori temperature che si registrano in primavera possono essere
la causa dell’anticipazione della fine della copertura nevosa. Per quanto riguarda l’
EIN, l’analisi del suo valore medio su 14 stazioni rappresentative valutato a date dif-
ferenti (1 Febbraio, 1 Marzo, 1 Aprile, 15 Aprile, 1 Maggio e 1 Giugno), mostra
nella sostanza una diminuzione di questa risorsa, sia nel periodo di accumulo, sia
in quello di fusione, con l’inizio di una notevole tendenza di decrescita all’inizio
degli anni novanta. La variazione è maggiormente evidente nei mesi di Aprile e

\[R^2 = 1 - \frac{\sum (Q_{\text{sim}} - Q_{\text{media}})^2}{\sum (Q_{\text{ric}} - Q_{\text{media}})^2} \]
\[\text{(4)} \]
Maggio. Nonostante la relativa brevità delle serie analizzate, che consigliano pru-
denza nell’interpretazione, i risultati qui presentati sembrano concordi nell’indicare
una tendenza generale per l’area in esame. Queste analisi effettuate sulle serie lo-
cali forniscono un indizio del cambiamento climatico in atto e vengono utilizzate per
la stima della diminuzione dell’EIN all’inizio della stagione di fusione.
Per le proiezioni di input di temperatura e precipitazione si utilizzano invece le va-
rizioni fornite da un modello climatico di circolazione globale di letteratura. Ven-
gono considerati i dati di temperature medie mensili e precipitazioni medie mensili
fornite dal modello HadCM3 per il periodo compreso tra il 1960 e 2099, riferiti al
punto di griglia più vicino all’area in esame. Questo modello è stato scelto perché,
rispetto ad altri, utilizza per la discretizzazione della superficie terrestre una griglia
in cui è visibile la penisola italiana. Si considera lo scenario di emissione A2 che
prevede un mondo eterogeneo con crescita di popolazione fino al XXI secolo, svi-
luppo economico localizzato solo in alcune aree del pianeta e cambiamenti tecno-
logici, specialmente nel campo dell’energia, lenti e discontinui.
Poiché le proiezioni fornite da tale modelli abbracciano scale spaziali e temporali
assai maggiori rispetto a quelle necessarie per la modellazione idrologica qui trat-
tata, non possono essere usate direttamente come input del modello idrologico
ma possono essere indicative di un evoluzione temporale prevista. Dalle serie pre-
viste dal modello climatico HadCM3 si è quindi proceduto come segue:
• Viene calcolata la media delle temperature e delle precipitazioni medie mensili
 per il periodo 1961-1990 considerato come periodo di riferimento;
• Viene calcolata la media delle temperature e delle precipitazioni medie mensili
 per il periodo 2010-2039 come rappresentativa dell’anno 2020;
• Vengono calcolate le variazioni tra il periodo 2010-2039 e il periodo di riferi-
 mento 1961-1990. Per la temperatura si considera la differenza tra medie men-
sili per il periodo 2010-2039 e medie mensili per il periodo 1961-1990, mentre
 per le precipitazioni il rapporto tra medie mensili per il periodo 2010-2039 e
 medie mensili per il periodo 1961-1990.
Lo stesso procedimento si applica considerando la media delle temperature e delle
precipitazioni medie mensili per il periodo 2040-2069 come rappresentativa del-
l’anno 2050.
Queste variazioni vengono applicate alle serie di precipitazioni e di temperatura
osservata localmente nelle stazioni meteo del Parco ottenendo l’input necessario
per il modello idrologico. La diminuzione dell’area glaciale viene stimata dalle aree
RISULTATI

Modello idrologico

Per la fusione nivale viene valutato un fattore degree-hour di 0.08 mm °C/h. L’aumento osservato di spessore nivale con la quota è pari 5 cm ogni 100 m. Per il ghiacciaio coperto da detrito viene valutato un fattore di 0.12 mm °C/h, valido in pratica per spessori maggiori di 10 cm, mentre 0.19 mm °C/h per il ghiaccio pulito. Riguardo ai parametri dei serbatoi lineari di Nash si considera un tempo di ritardo di 0.51 h per il serbatoio superficiale e di 2.11 h per il serbatoio sub-superficiale, basato sull’analisi di alcuni idrogrammi di riferimento. In Figura 4 si mostra il risultato ottenuto per il periodo 18/04/07-30/08/07. Si riporta il deflusso a scala oraria stimato dal modello e quello aggregato a scale giornaliera. Quest’ultimo viene confrontato con i deflussi ricostruiti alla scala giornaliera. Tale approccio si rende necessario, poiché la ricostruzione dei deflussi a scala oraria presenta notevoli incoerenze, sicuramente dovute ad errori di misura, che rendono la procedura di flow routing inverso a tale scala poco affidabile, in particolare per periodi di deflussi medio bassi quali quelli derivanti da fusione glaciale. Visivamente si osserva un buon adattamento del modello ai dati di deflusso ricostruiti. Il coefficiente volumetrico DV = -5.6% potrebbe evidenziare l’influenza delle perdite idrologiche, di cui non viene tenuto conto nel modello (un’analisi preliminare ha tuttavia indicato una scarsa influenza dei flussi evapotraspirativi, in virtù dell’elevata quota del bacino e la quasi totale assenza di vegetazione). Si nota che i periodi più critici da modellare sono quello di fusione nivale, dal 18/04 al 20/06, ed i periodi in cui avvengono contemporaneamente afflussi di diverso tipo. L’errore che si commette può essere dovuto nel primo caso all’utilizzo di un fattore costante di fusione della neve e nel secondo caso al fatto che occorre tenere in conto l’effetto della precipitazione liquida sulla fusione nivale e glaciale. Il valore dell’indice di Nash-Sutcliffe, R2, risulta pari a 0.33, per l’intero periodo e 0.50 consideringo solo il periodo successivo alla fine della fusione nivale (28/6). Si sottolinea che in questo caso il modesto valore di questo indice potrebbe risentire del fatto che non si dispone di misure dirette di deflussi osservati ma solo di deflussi ricostruiti tramite flow routing inverso.
Simulazioni di scenario

Le variazioni mensili di temperature e precipitazioni per le serie del modello HadCM3 scenario A2 ottenute vengono riportate in tab. 1.

<table>
<thead>
<tr>
<th>anno</th>
<th>gen</th>
<th>feb</th>
<th>mar</th>
<th>apr</th>
<th>mag</th>
<th>giu</th>
</tr>
</thead>
<tbody>
<tr>
<td>variazioni di temperatura rispetto al periodo 1960-1990 in °C</td>
<td>2020</td>
<td>0.28</td>
<td>1.39</td>
<td>1.31</td>
<td>0.56</td>
<td>1.22</td>
</tr>
<tr>
<td></td>
<td>2050</td>
<td>1.33</td>
<td>1.43</td>
<td>1.99</td>
<td>1.16</td>
<td>1.87</td>
</tr>
<tr>
<td>variazioni di precipitazione rispetto al periodo 1960-1990</td>
<td>2020</td>
<td>0.93</td>
<td>1.03</td>
<td>1.16</td>
<td>1.15</td>
<td>0.79</td>
</tr>
<tr>
<td></td>
<td>2050</td>
<td>0.93</td>
<td>1.02</td>
<td>1.18</td>
<td>1.18</td>
<td>0.81</td>
</tr>
</tbody>
</table>

Si osserva un aumento delle temperature più marcato nei mesi estivi sia per lo scenario relativo al 2020 che per quello relativo al 2050. Per quanto riguarda le precipitazioni esse rimangono pressoché invariate per lo scenario del 2020 con una
diminuzione annuale dell’1% mentre diminuiscono del 5% per lo scenario relativo al 2050.
L’andamento della diminuzione dell’area glaciale stimato dalle osservazioni è lineare con $R^2 = 0.85$.
L’andamento della diminuzione di EIN all’inizio della stagione di fusione è anch’esso lineare con $R^2 = 0.75$.
Risultati delle simulazioni condotte tramite il modello idrologico vengono riportati nelle figure da (5) a (7). Si mostrano in particolare (fig. 5) i volumi cumulati di deflusso atteso per i periodi 2020 e 2050 paragonati al deflusso nel periodo di riferimento 1961-1990. Si osserva una generale diminuzione del deflusso totale rispetto al periodo di riferimento pari al 14% per il 2020 e al 33% nel 2050. Questa diminuzione è concentrata nei mesi da giugno ad ottobre mentre si riscontra un lieve aumento in aprile e maggio. La spiegazione di questo comportamento può essere chiarita osservando i grafici dei volumi relativi alla sola fusione nivale (fig. 6) e glaciale (fig. 7). Si osserva come la fusione nivale è anticipata nei mesi di aprile e maggio a causa di temperature più alte mentre il volume cumulato di deflusso provocato dalla neve fusa diminuisce. In fig. 7 si osserva che per i mesi maggio-giugno-luglio è presente un lieve aumento del deflusso dovuto alle temperature più alte, mentre per agosto-settembre e ottobre la riduzione dell’area del ghiacciaio ha un effetto preponderante e il deflusso diminuisce.

FIG. 5 - Volumi di deflusso totali proiettati per i periodi di riferimento 2020 e 2050, a confronto con quelli relativi al periodo di riferimento 1961-1990.
FIG. 6 - Volumi di deflusso nivale proiettati per i periodi di riferimento 2020 e 2050, a confronto con quelli relativi al periodo di riferimento 1961-1990.

FIG. 7 - Volumi di deflusso glaciale proiettati per i periodi di riferimento 2020 e 2050, a confronto con quelli relativi al periodo di riferimento 1961-1990.
La studio svolto presenta una metodologia per la stima del deflusso di ablazione in un bacino alpino glacializzato. Sono considerate le tre diverse componenti date da precipitazione liquida, fusione nivale e fusione glaciale. Inoltre viene considerata la fusione particolare di un ghiacciaio coperto da detrito.

L’analisi condotta ha permesso di evidenziare che: (i) il deflusso nel bacino considerato è generato per il 48% da precipitazioni liquide, per il 28% dalla fusione del ghiacciaio e per il 23% dalla fusione nivale; (ii) maggiori errori nella simulazione si osservano nel periodo di fusione nivale.

Poiché il modello idrologico proposto fornisce nella sostanza risultati soddisfacenti viene utilizzato per l’analisi di scenari futuri di deflusso basati su proiezioni di temperature e precipitazioni. Le analisi effettuate mostrano minore disponibilità di acqua per il futuro derivante dalla fusione nivo-glaciale.

Il modello proposto, anche se opera diverse semplificazioni e può essere migliorato per ottenere una migliore descrizione dei processi per esempio considerando fattori di fusione variabili con la stagione e con la quota, ha un suo punto di forza nel fatto che richiede relativamente pochi dati in ingresso e può essere applicato anche in bacini scarsamente monitorati, una volta note le precipitazioni, le temperature e la morfologia del bacino.
BIBLIOGRAFIA

I LAGHI ATTORI ATTIVI O PASSIVI DEI CAMBIAMENTI GLOBALI?

Riassunto: TARTARI G., LAMI A., SALERNO F., & COPPETTI D., I laghi attori attivi o passivi dei cambiamenti globali?
I laghi sono particolarmente sensibili ai cambiamenti globali, sia perché sono in grado di rispondere alle pressioni fisiche, come l’aumento di temperatura dell’atmosfera, sia perché l’intero ecosistema, attraverso modifiche del ciclo di produzione/respirazione, produce segnali che vengono registrati fedelmente nelle valve di sedimenti. A questo riguardo vengono presentati alcuni esempi di casi di studio nei quali appaiono le risposte alle modifiche a breve, medio e lungo termine nei laghi subalpini ed himalayani.
I laghi non subiscono solamente in modo passivo l’influenza dei cambiamenti del clima ma, a loro volta, sono in grado incidere sulle concentrazioni di gas serra in atmosfera. In particolare agiscono sia come sequestratori di carbonio nei sedimenti lacustri sia come emettitori di biossido di carbonio e di metano. Un’analisi dell’importanza di questi fenomeni viene condotta alla luce delle incertezze scientifiche ancora aperte.

Abstract: TARTARI G., LAMI A., SALERNO F., & COPPETTI D., Are lake active or passive actors of global change?
Lakes are excellent sensors of global changes as they respond to physical stressors, like the increase in atmospheric temperature, and record changes in the respiration/production cycle within their sediments. Examples from South-alpine and Himalayan case studies are reported in this paper, which describe their responses to short, mid and long terms stressors.
Lakes and reservoirs do not just passively respond to climate change as they actively act on the green house gas concentrations in the atmosphere. In particular they can both operate as carbon sink, entrapping carbon within their sediments, and as sources of carbon dioxide and methane from their surface. The paper analyse these processes by the light of the current scientific uncertainties.

(*)Istituto di Ricerca Sulle Acque-CNR, Brugherio, Milano
(**)Istituto per lo Studio degli Ecosistemi-CNR, Verbania
(***)Unità di Ricerca presso Terzi (URT), Comitato Ev-K2-CNR, Bergamo
INTRODUZIONE

I laghi sono ecosistemi strettamente influenzati dalle condizioni climatiche (Wetzel, 1983; Eisenreich, 2005; EEA, 2008). Radiazione solare e vento rappresentano, infatti, le principali sorgenti di energia che regolano la fisica lacustre (Robertson & Imberger, 1994), sia con la formazione della stratificazione termica estiva, che attraverso i fenomeni idrodinamici (Imberger, 1994). Le variazioni di questi fattori fisici hanno risposte temporali che variano da pochi secondi a decenni e per tale motivo condizionano notevolmente lo stato ecologico lacustre.

L’insieme delle variazioni fisiche e biologiche causate direttamente dall’uomo o indirettamente dalle modifiche antropiche del clima sono registrate con grande risoluzione nelle valve dei sedimenti dei laghi per centinaia e migliaia di anni, permettendo alle tecniche paleolimnologiche la ricostruzione retrospettiva dell’evoluzione biologica dei corpi lacustri e, indirettamente, del clima del recente passato (Batterbee, 2000; Guilizzoni & Lami, 2002; Lami & alii., 2007).

A scale più brevi le masse d’acqua profonde dei laghi dimostrano una memoria degli effetti del riscaldamento atmosferico, con un significativo incremento delle temperature che, nei grandi laghi subalpini lombardi, si evidenzia in modo sincrono dimostrando che si tratta di una risposta a scala globale (Ambrosetti & Barbanti, 1999). I laghi di alta quota mostrano una sensibilità ancora più complessa ai cambiamenti del clima, attraverso variazioni spaziali e morfometriche strettamente legate alle modifiche delle aree glaciali, come è dimostrato nelle aree remote d’alta quota dell’Himalaya (Tartari & alii., 2008). Modificazioni nei regimi idrologici sono invece attese nei grandi laghi subalpini in entrambi i versanti delle Alpi, di pari passo con la riduzione delle aree glacialeizzate (UNEP, 2008), con un incremento delle fluctuazioni estreme stagionali. I laghi subalpini sono tra le più rilevanti riserve di acqua dolce, sempre più utilizzate anche in Lombardia come sorgente idropotabile, con punte che sfiorano il 90% per aree densamente popolate ed industrializzate come il Lago di Como (Gruppo di Lavoro Lago di Como, 2006).

E’ difficile definire quali siano i rischi maggiori a cui vanno incontro i laghi sottoposti alle diverse pressioni globali: fattori fisico-climatici, aumento dei gas serra, variazione dei cicli biogeochimici, circolazione dei microinquinanti, circolazione del particolato terrigeno sollevato dalle aree desertiche, riduzione o perdita di biodiversità ecc. Nel seguito si farà però riferimento solo ai primi due elencati in precedenza, perché ritenuti tra quelli principali in grado di modificare significativamente gli ecosistemi lacustri nei prossimi secoli.

I laghi non sono però solo attori passivi dei cambiamenti globali, ma anche attivi. Se è vero che da un lato agiscono come sequestratori di grandi frazioni di carbonio prodotte nei loro bacini imbriferi, è altrettanto vero che costituiscono una sor-
gente importante di biossido di carbonio e di metano che contribuiscono significativamente al bilancio dei gas serra della Terra, con punte massime che si raggiungono nei poco profondi ma sterminati laghi delle latitudini più elevate (Nord Europa, Asia ed America).

INFLUENZE CLIMATICHE SUI LAGHI

La termica e l’idrodinamica lacustre sono governate da fattori esterni suddivisibili in meteo-climatici (temperatura dell’aria, radiazione solare, velocità del vento) e idrologici (portata e temperatura degli immissari ecc.). L’insieme di questi fattori (Fig. 1) determina le caratteristiche idrodinamiche dell’ambiente (Imberger, 1994), quali l’intensità e la durata della stratificazione estiva, la struttura dei moti periodici (sesse) e aperiodici (correnti) ecc.

Sulla base degli scenari brevemente decritti è lecito attendersi un generale surriscaldamento delle acque lacustri che spinge gli ecosistemi verso una maggiore stabilità della colonna d’acqua, verso una riduzione dello spessore del mixolimnio (lo strato superficiale rimescolato) e verso una riduzione del periodo di massima circolazione invernale delle acque (Livingstone, 2003; Eisenreich, 2005).

La mancata o ridotta circolazione invernale e il conseguente prolungamento del periodo di stratificazione comporta una riduzione degli scambi gassosi tra l’atmosfera e gli strati profondi della colonna d’acqua. In ambienti molto produttivi questa situazione può portare ad un aumento del deficit di ossigeno sul fondo e ad un conseguente aumento del rilascio di nutrienti e inquinanti dai sedimenti (Salmaso & alii, 2003). L’atteso aumento del gradiente termico tra la superficie e il fondo determina anche possibili risposte ecologiche (Moren-Abat & alii, 2007). In particolare, una maggiore stabilità della colonna d’acqua favorisce la crescita e la proliferazione di specie cianobatteriche alcune delle quali potenzialmente tossiche sul biota e sul l’uomo (Reynolds, 1984).
Quanto sopra descritto sottolinea la complessità dello studio degli effetti dei cambiamenti globali sulla struttura fisica e sulle dinamiche chimiche e biologiche in ambiente lacustre. La complessità dei processi implicati e la molteplicità dei fattori in gioco richiederà in modo sempre più ampio l’applicazione di modelli numerici complessi, che consentano di produrre scenari plausibili delle risposte ai cambiamenti globali.

IL RUOLO PASSIVO

Per ruolo passivo dei laghi si vuole intendere la reazione comportamentale dell’intero ecosistema alle pressioni esercitate dai cambiamenti globali.

Risposte dei laghi al cambiamento del clima

I laghi sono sistemi che mostrano risposte di tipo fisico, chimico e biologico a forzanti esterne quali i driver meteorologici e idrologici (Fig. 1). Come già accennato, oltre alle influenze sul comparto fisico (aumento della stabilità della colonna, prolungamento del periodo di stratificazione delle acque ecc.), le ripercussioni sul comparto chimico sono multepli e riguardano il prolungamento dei periodi di deficit di ossigeno e il conseguente aumento del rilascio di nutrienti e inquinanti dai sedimenti. Tra le diverse risposte ecologiche si sottolinea l’instaurarsi di condizioni favorevoli alla proliferazione di specie potenzialmente tossiche.

Il monitoraggio dei cambiamenti climatici attualmente in corso e la previsione della
loro futura evoluzione spingono la limnologia verso lo sviluppo di sistemi di misurazione sempre più sofisticati (Yeates & alii, 2008) ed all’applicazione di strumenti modellistici previsionali sempre più realistici (Schladow & Hamilton, 1997; Romero & alii, 2004; Copetti et al., 2006), in grado di sostenere in modo più concreto le azioni di mitigazione.

Casi di studio

I grandi laghi sudalpini

Indipendentemente dalle cause ultime, gli effetti delle modificazioni del clima in atto hanno determinato delle alterazioni dei processi di scambio che avvengono tra la superficie dei corpi idrici e l’atmosfera sovrastante. In particolare se, come previsto dai modelli di evoluzione del clima, si manterrà l’attuale tendenza all’incremento della temperatura, questo determinerà anche un aumento della temperatura superficiale delle acque, che a sua volta influenzerà il bilancio termico dei corpi idrici (EEA, 2008).

Dare una misura di questi cambiamenti non è facile poiché questi fenomeni sono soggetti ad una grande variabilità sia stagionale che interannuale; è pertanto necessario avere a disposizione serie di dati tra loro confrontabili e che coprono un intervallo di tempo sufficientemente lungo per poter distinguere questi segnali rispetto a quelli che rientrano in una naturale variabilità climatica. In questo contesto lo studio dei contenuti calorici nei grandi laghi (Ambrosetti & Barbanti, 1999) fornisce buoni indicatori del riscaldamento globale in atto, al pari di altri quali il ritiro dei ghiacciai, l’aumento della desertificazione e del livello del mare. La grande capacità termica dell’acqua fa sì che il processo di immagazzinamento e perdita del contenuto di calore delle acque di un lago agisca da filtro smorzando le fluttuazioni giornaliere, stagionali e interannuali; questo effetto è maggiore per gli strati più profondi della colonna d’acqua (Eisenreich, 2005).

La misura del profilo della temperatura dei grandi laghi rappresenta un utile strumento per monitorare gli effetti delle variazioni del clima. In Europa esistono diverse serie storiche di questo tipo (Livingstone, 2003). Qui si riporta a titolo di esempio il caso di alcuni laghi italiani subalpini, tratto da Ambrosetti & Barbanti (1999), in cui è mostrato il contenuto calorico delle acque ipolimniche a partire dal 1950 (Fig. 2). Dal grafico è evidente una ciclicità stagionale e una chiara tendenza all’aumento della quantità di calore che viene immagazzinata negli strati profondi della colonna d’acqua e che l’andamento tra i diversi laghi è perfettamente sincrono. A testimonianza della capacità di questo di riflettere quanto si verifica in atmosfera, si osservano le nette diminuzioni del contenuto calorico provocate da eventi climatici nel 1981 e 1989 legati ad anni idrologici particolari. Ciò testimon
che le variazioni che si osservano non sono legate a fattori locali e specifici di un singolo lago, ma sono dovuti a forze che agiscono su più ampia scala.

Fig. 2. Variazioni del contenuto calorico dei laghi Maggiore, Garda e Orta. Dati raccolti con frequenza bimestrale nel periodo 1963-1998. I valori relativi al Lago d’Orta sono riportati sull’asse di destra (tratto da Ambrosetti & Barbanti, 1999). Le differenze tra i tre laghi sono spiegabili in termini climatici, si veda la loro posizione rispetto all’arco alpino ed alle relative isoterme medie annuali, ed idrologici, per i differenti volumi delle cuvette lacustri: Maggiore>Garda>>Orta.

Il Lago di Como
Il Lago di Como è il più profondo tra i grandi laghi dell’arco alpino (profondità massima 425 m). Il suo stato trofico naturale è oligotrofia ma attualmente si trova in condizioni di piena mesotrofia. A partire dal 2004 questo ambiente è stato dotato di un sistema di misurazione in continuo costituito da tre stazioni Lake Dyagnostic System (LDS) per la misura dei principali driver meteorologici e del profilo termico lacustre (Fig. 3). Tale sistema di misurazione acquisisce dati a frequenze molto elevate (3 misure al minuto) per il monitoraggio sia dei processi di rimescolamento a breve scala temporale che degli andamenti stagionali e pluriannuali (Yeates & alii, 2008; Morillo & alii, in press). La figura 4 riporta, come esempio di tali misure, l’andamento delle isoterme lungo tutta la colonna d’acqua relative alla stazione LDS1, posizionata a 4 km dalla Città di Como, per il periodo compreso tra il 25 Marzo ed il 1 Luglio 2007. A fine Marzo la colonna d’acqua nella porzione meridionale del Bacino Occidentale
del Lago di Como mostra ancora una pressoché completa omeoterminia nei primi 160 m, ma già ad Aprile si inizia a formare un gradiente termico con temperature degli strati superficiali intorno a 11 °C e temperature sul fondo intorno a 6,5 °C. Con l’avvicinarsi della stagione estiva la temperatura in superficie sale rapidamente e si evidenzia un netto salto termico che raggiungerà il massimo gradiente a fine estate (Agosto-Settembre). Tale processo termina nel mese di gennaio quando il lago si avvia verso una fase di rimescolamento che può portare, a seconda delle condizioni climatiche del periodo invernale, ad una completa circolazione.

La figura 4 mostra molto bene come la struttura termica superficiale subisca continue fluttuazioni lungo la verticale della colonna d’acqua. Queste fluttuazioni, che hanno numerose cause che le originano (Imberger, 1985) e possono essere senza dubbio considerate i veri driver che condizionano marcatamente l’ecologia lacustre, sono essenzialmente determinate dal vento (direzione e velocità), dalla radiazione solare e dai movimenti interni del lago (sesse). Anche gli afflussi dei principali immissari giocano, però, un ruolo molto importante, specialmente durante le piene e nei periodi di stratificazione, quando le acque degli immissari si posizionano nella massa d’acqua lacustre a seconda della loro densità, direttamente legata alla loro salinità ed alla temperatura, influenzando la distribuzione dei nutrienti e quindi la produttività lacustre. La sensibilità di questi fattori, tutti principalmente dipendenti dalle condizioni meteorologiche che si registrano nelle diverse parti dello specchio lacustre, costituisce il centro di interesse dell’attuale ricerca fisico-limnologica.

La previsione di come possano mutare i principali driver lacustri a seconda degli scenari climatici non può però non tenere conto anche di una visione d’insieme a scala dell’intero bacino idrografico. In un lago come quello di Como, alimentato dal fiume Adda, nel cui bacino vi è una presenza di significative aree glaciali, si introduce un’importante causa di variabilità, sulla cui rilevanza ai fini delle previsioni modellistiche sarà necessario focalizzare ancora molti sforzi di ricerca.
I ghiacciai nell’arco alpino rappresentano, infatti, un’importante sorgente di acqua in grado di condizionare la portata di base (base flow) di affluenti quali l’Adda ed il Mera nel caso del Lario, che sembra destinata a ridursi nei prossimi anni per effetto del continuo regredire delle aree glaciali, una regressione che può essere in grado di influenzare anche la qualità delle acque, come recentemente messo in evidenza da Bettinetti & alii. (2008), che hanno rilevato un netto aumento di pp DDT
e dei relativi metaboliti in molluschi e pesci dei laghi di Como ed Iseo, spiegato dagli Autori come rilascio di questi composti da parte dei ghiacciai sui quali si erano depositati dall’atmosfera negli anni 1950-70, il periodo di massimo utilizzo di questi specifici clorurarti anche nelle valli alpine per la preservazione delle produzioni agricole.

Studi limnologici in alta quota in Himalaya

I laghi di alta quota, benché posti in aree remote, sono minacciati da una crescente pressione antropica perché in queste aree gli effetti dei cambiamenti globali sono più pronunciati (Liu & Chen, 2000). Il ritiro glaciale, ad esempio, ha una profonda influenza sull’idrologia ed ha come diretta conseguenza l’alterazione della distribuzione e della presenza stessa degli ecosistemi lacustri (Tartari & alii, 2008).

Come detto sopra, i bacini lacustri, grazie alle proprietà dell’acqua di smorzare l’effetto delle variazioni a breve termine, possono essere utilizzati come indicatori delle variazioni climatiche a lunga scala. I laghi localizzati in alta quota, per le ridotte dimensioni e un modesto bacino imbrifero in rapporto alla superficie del lago, riflettono meglio gli effetti dei cambiamenti del clima. Questi ambienti sono in genere lontani da fonti dirette di alterazioni antropiche e quindi le alterazioni osservate sono più strettamente legate a fattori climatici (Sommaruga-Wögrath & alii, 1997). Tuttavia anche in questo caso la variabilità naturale impone di avere delle serie di dati sufficientemente lunghe per poter essere in grado di distinguere una tendenza rispetto alle fluttuazioni casuali.

Per questo scopo i sedimenti lacustri, che conservano diversi resti fossili (es. pigmenti fotosintetici, polline, diatomee), forniscono dati su temperatura, trofia, produttività e danno indicazioni non solo sulla storia del lago ma anche del suo bacino imbrifero (Batterbee, 2000; Guilizzoni & Kami, 2002; Lami & alii, 2007).

A titolo di esempio sono riportati i risultati di una ricerca condotta in Himalaya nell’ambito del Progetto Internazionale di ricerca Ev-K2-CNR. Il Plateau Tibetano è una delle regioni più isolate e meno esplorate nel mondo ed è spesso definito come il “Terzo Polo”. I laghi situati in quest’area remota sono particolarmente indicati per gli studi paleoecologici e paleoclimatici poiché, ad esempio, il segnale climatico è amplificato per la scarsa influenza dell’attività antropica. In particolare, il Plateau Tibetano gioca un ruolo fondamentale nella circolazione atmosferica sia a scala locale sia extra-regionale. Il monsone indiano e il forte campo di alta pressione chiamato “Tibetan High” sono, infatti, agenti climatici determinanti per la circolazione atmosferica nell’emisfero boreale, come evidenziato recentemente dal notevole interesse nel mondo scientifico per la cosiddetta “Asian Brown Cloud” (http://www-c4.ucsd.edu/Project ABC/). Inoltre, i risultati di alcuni studi (Bush, 2004,) hanno messo in evidenza una connessione tra le condizioni climatiche nell’area himalayana, dominata dal monsone asia-
tico, e le variazioni della copertura nevosa nell’Eurasia o le oscillazioni di intensità del l’ENSO (El Niño/Southern Oscillation) e quindi l’esistenza di un legame con la circola- zione atmosferica globale. L’ampia varietà di ambienti lungo il transetto Polo-Equatore-Polo (PEPII, IGBP-PAGES) rende infine i sedimenti dei laghi, situati in quest’area, particolarmente adatti per le analisi paleoclimatiche e modellistiche.

Fig. 5. Nella figura a sinistra è riportata un’immagine del Lago della Piramide Inferiore (LCN10, Tartari & alii., 1998), presso il Laboratorio-Osservatorio Piramide (visibile in alto nella fotografia), mentre a si- nistra è riportata una mappa schematica dell’orografia dell’area.

Fig. 6. Ricostruzione schematica (ottenuta dal profilo stratigrafico (tipico di specie planctoniche) delle fasi climatiche, evidenziate nello studio sulla carota PIR INF 02-3 (Lami et al., 2007), confrontate con la dinamica dei ghiacciai nella regione himalayana (Röthlisberger & Geyh, 1985).
Gli studi paleolimnologici condotti in Himalaya presso il Laboratorio-Osservatorio Piramide in Nepal (5050 m; Lami & alii., 2007), attraverso una collaborazione decennale (1992-2008) tra CNR-ISE e CNR-IRSA, evidenziano bene il potenziale contributo degli ambienti lacustri d’alta quota nel migliorare le conoscenze sull’evoluzione del sistema climatico globale. Il progetto, che ha visto lo svolgimento di indagini limnologiche inerenti l’idrochimica e la biologia, ha permesso di raccogliere e studiare una carota di sedimenti prelevata nel cosiddetto Lago Piramide Inferiore (Lake Cadastre Number 10, Tartari & alii, 1998) nei pressi del Laboratorio Piramide (Fig. 5). Da questa analisi (Fig. 6) sono emerse evidenti diverse fasi di cambiamento nei parametri geochimici (sostanza organica, acqua) e biologici (diatomee, produttività primaria) durante gli ultimi 3500 anni. Tali cambiamenti possono essere messi in relazione (allo stesso modo dei laghi artici) con la durata di copertura del ghiaccio e quindi indirettamente con la temperatura e le variazioni globali del clima. In particolare si può affermare che da 3500 fino a circa 2500 anni fa (450 a.C.), il Lago Piramide Inferiore ha attraversato l’ultima fase di un lungo periodo glaciale culminato intorno al 2000 a.C. A questa fase è seguito un periodo di generale elevata produttività, durato circa 800 anni coincidente con la fase di riscaldamento climatico noto come Caldo Romano, e terminato all’inizio del primo millennio A.D. Il periodo noto come Caldo Medievale, nella regione Himalayana non è risultato così evidente come in Europa essendo caratterizzato da repentine oscillazioni indicatrici di fasi di raffreddamento, coincidenti con periodi in cui nel sud-est asiatico si sono verificate eruzioni vulcaniche di entità catastrofica. Per contro la fine della “Little Ice Age” (1700-1800 A.D.) è evidenziata da una corrispettiva fase di raffreddamento anche in questa regione del Nepal, in accordo con quanto rilevato negli studi di glaciologia (Fig. 6). Infine, nel XX secolo nel Lago Piramide Inferiore si è osservato un rapido ritorno a condizioni di elevata produttività, ad indicare un miglioramento delle condizioni climatiche dovuto a una nuova fase di riscaldamento che risulta essere superiore, anche se non di molto, a quelle riscontrate negli ultimi 3500 anni.

Questi risultati mettono bene in evidenza l’elevata sensibilità degli ambienti lacustri remoti d’alta quota e la loro estrema importanza nelle ricostruzioni climatiche a breve/medio periodo temporale, comunque comprendenti la transizione tra l’epoca pre-industriale e l’antropocene (Crutzen, 2004).
IL RUOLO ATTIVO

Per ruolo attivo dei laghi, in contrapposizione a quello esaminato in precedenza e definito come passivo, si vuole intendere il contributo che questi ambienti possono dare all’incremento/decremento dei gas serra che determinano il cambiamento climatico globale.

4.1 Assorbimento/rilascio di CO₂

I laghi sono una componente del ciclo idrologico per il quale solo recentemente è stato individuato un ruolo di rilievo nel bilancio del carbonio (Einsele & alii, 2001), poiché oltre alla produzione autoctona nei laghi si vengono a concentrare apporti alloctoni provenienti dal bacino. Secondo Dean & Gorham (1998) la stima di tutto il carbonio confinato annualmente nei laghi, negli invasi e negli oceani è rispettivamente di 42, 160 e 100 Tg/a. Laghi ed invasi, per la loro più elevata produttività rispetto agli oceani e per il ruolo di raccolta delle acque del bacino scolante, contribuiscono annualmente alla sedimentazione di una quantità di carbonio doppia rispetto agli oceani, nonostante il confronto volumetrico sia di 1 a 104.

I laghi e gli invasi possono quindi avere un ruolo importante nel ciclo del carbonio (St. Luis & alii, 2000) agendo come emettitori e/o sequestratori di biossido di carbonio (CO₂), con delle variazioni in un senso o nell’altro durante le stagioni a seconda del prevalere della produzione o della respirazione. In generale i laghi poco produttivi sono degli emettitori di CO₂, mentre al contrario i più produttivi sono sequestratori (Duarte & Agustí, 1998). Nella fig. 7 è riportata una rappresentazione schematica molto elementare in cui vengono indicati i principali componenti del ciclo del carbonio in un corpo lacustre. Gli alberi stilizzati indicano che la principale sorgente di carbonio deriva dalla vegetazione d’alto fusto che, negli ambienti boreali dove si trovano la maggior parte dei laghi sulla Terra, copre il bacino imbrifero. Il dilavamento porta al lago il carbonio prevalentemente in forma di carbonio organico totale (TOC). Dai corsi d’acqua deriva pure una parte di carbonio inorganico (TIC), generalmente di natura geochemica, che si trova in buona parte in forma disolleva come alcalinità carbonatica (HCO₃⁻, Lerman & Stumm, 1989). Nelle acque lacustri la componente organica disolleva (DOC) è quindi in equilibrio con il biossido di carbonio disolleva (H₂CO₃*; Panizzuti & Tartari, 1995), che a sua volta costituisce la sorgente di CO₂ gassosa che viene emessa in condizioni in cui prevale la mineralizzazione della sostanza organica.
In generale va rilevato che la frazione di CO₂ gassosa assorbita direttamente dall’atmosfera è molto limitata rispetto alle emissioni (Fig. 7) e tende ad essere presente in concentrazioni soprasature nelle acque lacustri (Cole & alii, 1994; Sobek, 2005). Approssimativamente il 10% della CO₂ emessa dai laghi viene prodotta nei sedimenti superficiali, mentre tra il 30 e 80% della frazione di carbonio organico alloctono originato nel bacino viene emesso come CO₂ gassosa, portando quindi i laghi ad essere in prevalenza degli emettitori rispetto a sequestratori di carbonio (Algesten & alii, 2005).

Emissione di CH₄

Fin dal 1776, quando Alessandro Volta scoprì fuoriuscire il metano (CH₄) in un’ansa stagnante del fiume Lambro, si conosce che questo gas, il secondo per importanza per emissioni tra tutti i gas serra dopo il biossido di carbonio, si produce in condizioni anossiche per decomposizione della sostanza organica. Oltre che nelle zone paludose e nelle risaie dove si hanno condizioni anossiche (Fig. 7), il metano è prodotto nella digestione anaerobica del bestiame, nelle discariche di rifiuti solidi urbani o per digestione anaerobica di biomasse.

I laghi solo recentemente (Walter & alii, 2006) sono divenuti oggetto di interesse per il loro potenziale contributo al bilancio delle emissioni di metano. Nonostante che già nel 1989 Aselmann & Crutzen sollevassero il problema, per oltre un decennio rimase solo una discussione circoscritta all’ambito della ricerca.

Complessivamente il contributo globale di CH₄ emesso dai corpi lacustri si attesta intorno al 6-18 % del totale delle emissioni naturali (Bastviken & alii, 2004). Esistono comunque ancora numerose incertezze nel bilancio a scala globale del CH₄, in particolare perché non sono ancora ben noti i reali flussi di emissione in Siberia e nel
I laghi, ma forse in questo caso sarebbe meglio dire tutte le zone palustri alle alte latitudini, devono quindi essere considerati importanti emettitori di metano. Il loro ruolo complessivo resta comunque ancora da definire.

CONCLUSIONI

I laghi sono eccellenti registratori dei cambiamenti climatici globali, sia attraverso la capacità di accumulare calore nelle acque ipolimniche dei laghi profondi, che attraverso le tracce lasciate nei sedimenti dalle vicende biologiche le cui risposte in termini di produttività sono strettamente legate alle variazioni climatiche stagionali. Le risposte temporali possono coprire da pochi anni a diverse centinaia di anni, consentendo la ricostruzione a ritroso delle fluttuazioni climatiche dell’area di collocazione del lago attraverso i residui delle biomasse algali conservati nelle valve dei sedimenti. I laghi d’alta quota, in particolare, appaiono particolarmente sensibili per la fedele ricostruzione delle variazioni climatiche, essendo in grado di fornire indicazioni anche sulle pressioni che agiscono a scala di bacino idrografico. Solo di recente si è scoperto il ruolo significativo dei laghi come attori diretti delle modifiche dei gas serra. Questo aspetto richiede ancora una attenta attività di ricerca di base per definire. Sarebbe, infine, auspicabile che i concetti sopra delineati incominciassero a permeare anche i settori della gestione degli ecosistemi lacustri e il corpo normativo nazionale ed europeo al fine di armonizzare gli obiettivi di qualità ecologica con una gestione dei laghi volta a minimizzare il rapporto tra emissioni di gas serra dalla superficie e la capacità di intrappolare carbonio nei sedimenti.
BIBLIOGRAFIA

MORILLO S., IMBERGER J., ANTENUCCI J.P. & COPETTI D.. (In press) - Using impellers to distribute local nutrient loadings in a stratified lake: Lake Como, Italy. ASCE.

179

RIASSUNTO: MAGGI V., Carotaggi di ghiaccio alle medie latitudini.

I ghiacciai delle medie latitudini rappresentano un formidabile archivio di informazioni climatiche ed ambientali. In particolare quelli dell’area alpina permettono di comprendere il rapporto tra la forte antropizzazione dei paesi limitrofi e lo stato dell’atmosfera. Il Colle del Lys (Monte Rosa, Valle d’Aosta) è uno di questi siti che, fornisce dati sull’impatto dell’uomo nell’arco degli ultimi 60 anni. In particolare le polveri fini sono uno dei record di maggior importanza, sia per gli arrivi diretti dalle aree limitrofe al Monte Rosa, come la Pianura Padana, sia per i materiali trasportati dal Sahara fino all’Arco Alpino. Queste registrazioni hanno fornito importanti dati sulla variazione delle polveri fini nell’area studiata, e sui percorsi e sui metodi di trasporto a partire dal Nord Africa, attraverso l’Europa fino nell’area Alpina ed oltre.

ABSTRACT: MAGGI V., Middle latitude ice coring.

The mid-latitude glaciers represent an high important archive of climatic and environmental information. In particular, the European Alpine glaciers provides data on the relationship between atmosphere and the surrounding high industrialized countries. The Colle del Lys (Monte Rosa, Valle d’Aosta) represent one of this sites that, provide information on the last 60 years of Alpine human impacts. In particular, atmospheric dust represent one of the most important record of the atmospheric transport and the air mass trajectories, both with local transport from the close areas, like Po Plain, and from the long distance transport, from the North Africa, like Sahara.

(*) Dipartimento di Scienze dell’Ambiente e del Territorio, Università di Milano Bicocca – Comitato Glaciologico Italiano
I GHIACCIAI ALPINI COME ARCHIVI CLIMATICI

Le precipitazioni nevose, che derivano dal congelamento di liquido o sublimazione di vapore in atmosfera, rappresentano il sistema migliore per conservare le informazioni sullo stato dell'atmosfera nel momento di formazione del fiocco di neve e trasferirle sulla superficie terrestre. Per questo motivo l'accumulo di successive nevicate forma un archivio naturale dettagliato della composizione chimica e delle condizioni fisiche dell'atmosfera nel momento del "congelamento". E’ perciò evidente che i ghiacciai, nati, cresciuti ed evoluti dalle precipitazioni nevose, sono i luoghi ideali per andare alla ricerca di queste successioni di informazioni. Di fondamentale importanza è anche la conservazione di queste informazioni nel tempo. Per questo motivo diventano importanti i ghiacciai, o quelle parti dei ghiacciai, che sono situati a latitudini o quote tali da ridurre al minimo il rischio di fusione. I ghiacciai polari, come le calotte dell’Antartide e della Groenlandia, e i ghiacciai situati a quote elevate, sono i migliori candidati per studi che intendano leggere e interpretare questi archivi.

In effetti, il recente sviluppo delle conoscenze sulle variazioni climatiche e ambientali globali e delle loro relazioni con la composizione dell’atmosfera si basa, in larga parte, sull’analisi delle carote di ghiaccio estratte con perforazioni profonde nelle calotte polari. Dalla perforazione di Vostok in Antartide, dell’inizio degli anni Settanta, a quelle più recenti di Summit (Groenlandia) all’inizio degli anni Novanta e di Dome C (Antartide) a partire dal 1997, sono stati intrapresi grandi sforzi per l’analisi di queste carote, che riflettono situazioni geografiche dove l’accumulo nevoso è per la quasi totalità conservato, dove non esistono fonti locali di inquinamento e dove si può procedere, a ritroso nel tempo, fino a oltre 800.000 anni fa (EPICA Community Members, 2004; GRIP Members, 1993; Johnsen & alii, 1992; Jouzel & alii, 1993; Petit & alii, 1999).

Nella catena alpina, situata alle medie latitudini con clima temperato, le aree che permettono di effettuare studi di questo tipo sono piuttosto limitate. In effetti, solamente sopra la quota dei 4000 m è possibile trovare condizioni climatiche tali da permettere la conservazione quasi totale della neve caduta.

Infatti, dove la temperatura media annua si mantiene sotto i -10° (anche se in alcuni giorni dell’anno ci possono essere temperature positive) è possibile che l’intero pacco di neve, nevato e ghiaccio, si mantenga praticamente inalterato. Dunque, anche i ghiacciai collocati alle medie latitudini sono in grado di fornire informazioni utili e complementari rispetto a quelle delle calotte polari (Delmas, 1992). Alcune di queste aree si trovano collocate in zone densamente abitate, ove quindi è possibile ottenere informazioni non soltanto a carattere climatico, ma riguardanti anche l’impatto dell’uomo. In questo contesto le Alpi, situate in una re-
gione di antico e intenso popolamento e di sviluppata industrializzazione, occu-
pano un posto privilegiato. Anche se l’accumulo nevoso sui ghiacciai alpini è spesso
influenzato dalle condizioni meteorologiche locali, i record cronologici ottenibili
(da alcuni decenni a qualche secolo) sono attendibili e con una risoluzione tale da
costituire un insostituibile archivio naturale per la storia dell’impatto umano sull’at-
mosfera e sull’ambiente europeo.

IL COLLE DEL LYS E LE PERFORAZIONI IN GHIACCIO
IN AREA ALPINA

I siti dove condurre perforazioni in ghiaccio sulle Alpi non sono numerosi; le quote,
infatti, devono essere molto elevate, al di sopra dei 4000 m, dove la temperatura
sale raramente sopra 0° e quindi gli effetti della percolazione per fusione sono ri-
dotti (ghiacciai “freddi”) (Haeberli & Alean, 1985). La morfologia del ghiacciaio
deve inoltre essere adatta (selle o piccole calotte) sia per ridurre le deformazioni
della stratigrafia del ghiaccio dovute ai movimenti delle masse glaciali, sia dal punto
di vista strettamente logistico.
Fino al 1996 i siti erano solo due, il Colle Gnifetti (4450 m), fra la Punta Zumstein e
la Punta Gnifetti nel massiccio del Monte Rosa, sul confine italo-svizzero, e il Col du
Dome (4250 m), nel massiccio del Monte Bianco in Francia (Haeberli & alii, 1988;
Maupetit & alii, 1995) (fig. 1). Nell’estate 1996 stata effettuata una perforazione di
80 m di profondità sul Colle del Lys (Fig. 1) a circa 4250 m, sempre nel gruppo del
Monte Rosa (Maggi & alii, 2000; Rossi & alii, 1998; Smiraglia & alii, 2000). Si tratta
del bacino di accumulo del Ghiacciaio del Lys che scende verso Sud-Ovest, nella
Valle di Gressoney. Il Colle del Lys fa anche parte di uno dei bacini di alimentazione
del Ghiacciaio di Gorner, che scende verso Nord, in Svizzera. L’esistenza di una pic-
cola sella semi-pianeggiante, quindi con flussi superficiali e profondi limitati, per-
mette di ottenere un accumulo poco disturbato dai movimenti del ghiaccio stesso.
Nella primavera del 2003 è stata ripetuta la perforazione, stavolta di 106 m di pro-
fondità non distante da quella del 1996, ma senza raggiungere la base del ghiacciaio.
 Questa seconda perforazione ha permesso di verificare le serie di dati ottenuti
dalla precedente, oltre che a permettere di aggiungere altri otto anni di informa-
FIG. 1 - Mappa schematica dei siti di perforazione in area Alpina. A) Inquadramento geografico nel Nord Italia; B) Area del Monte Bianco con il Col du Dome; C) Area del Gruppo del Monte Rosa con i due siti del Colle Gnifetti e del Colle del Lys.
La sonda di perforazione utilizzata sia nel 1996 che nel 2003 è di tipo elettromecanico, con sistema carotiere-motore di rotazione-antitorchio tutto a fondo foro. I comandi vengono trasferiti attraverso un cavo coassiale di 150 m, con elettrodì interni per l'alimentazione del carotiere e una guaina esterna in acciaio per la protezione e la tenuta. Il sistema è montato su una torre di perforazione, che può ruotare in posizione orizzontale per la manutenzione e il prelievo delle carote e può essere messa in posizione verticale per le fasi di perforazione.

RISULTATI

Il lavoro è stato svolto in due fasi principali. La prima ha riguardato la costruzione dei record della concentrazione e della distribuzione granulometriche delle polveri, in funzione della profondità. Pur trattandosi di due perforazioni effettuate nella stessa area, esistono sempre delle differenze, specialmente come valori di accumulo medio che variano annualmente anche in modo sostanziale. In questo caso abbiamo stimato un accumulo di 1.3 m di acqua equivalente (w.e.) nella carota Lys2003 contro un valore medio di 1.6 m w.e. in quella Lys1996 (fig. 2). Ovviamente la differenza può essere data dai circa 8 anni di differenza tra le due perforazioni, anche se il livello di raffronto per questa datazione è il medesimo. Infatti è stato usato il livello del picco di trizio (3H) rappresentante il fallout delle esplosioni termonucleari in atmosfera effettuate alla fine del 1962 prima dell'entrata in vigore del bando internazionale. Il picco viene assegnato al 1963 in quanto si deve tenere presente della circolazione generale dell'atmosfera che non è immediata. Questo picco ben riconoscibile a livello planetario è considerato il più importante orizzonte di riferimento della seconda metà del 20° secolo. Le misure di trizio sono state effettuate presso il Dipartimento di Scienze della Terra dell'Università di Trieste attraverso un contatore a scintillazione.

La seconda fase del lavoro ha riguardato la correlazione dei record delle polveri con quelle serie climatiche che potrebbero fornire importanti confronti con i nostri dati. In particolare sono stati messi a confronto con la serie di dati del Progetto PRIDE (Prospero & Lamb, 2004) che rappresenta l’unico record strumentale continuo di polveri di provenienza sahariana, che, attraversando l’Oceano Atlantico, raggiunge il Centro America. Inoltre, il confronto è stato fatto con la serie di anomalia di precipitazione del Sahel (SSPI, Sahel Severity Precipitation Index), che rappresenta l’indice di aridità della zona sub-sahariana (Prospero & Lamb, 2004). La cor-
relazione con questi due record ha messo in evidenza una evidente parallelismo tra l’incremento di aridità nel Nord Africa a partire dagli anni ’70, con il trasporto di polveri, non solo lungo il sistema degli alisei (già da tempo noto), ma anche all’interno del sistema dei venti occidentali, generalmente controllato dalla disposizione dei sistemi barici nell’Area Mediterranea e Sud Europea. Una ulteriore prova di questa correlazione è messa in evidenza dal confronto della serie del Colle del Lys con i dati della North Atlantic Oscillation (NAO), indice che caratterizza il rapporto di forza tra l’Anticiclone delle Azzorre e la Bassa pressione dell’Islanda. La NAO è la causa prima del percorso che i cicloni delle Medie Latitudini compiono all’interno del sistema di venti occidentali. Un passaggio più meridionale o più settentrionale di questi sistemi ciclonici porta ad aumentare o diminuire le possibilità di trasporto da Sud verso Nord delle polveri che vengono sollevate in Nord Africa (fig. 4). Il confronto tra concentrazione delle polveri Lys e NAO sembra essere particolarmente significativo. Data la differenza tra i dati diventa difficile esprimere questi valori in termini strettamente statistici, ma la grande concentrazione di eventi sahariani (visibili e non) nella parte centrale del record, tra il 1985 ed il 1996 sembra rispecchiare la fase particolarmente positiva dell’indice NAO invernale, legato in genere ad un rafforzamento dell’Anticiclone delle Azzorre che causa una generale siccità sull’area Nord Africana e Mediterranea, permettendo un maggiore trasporto di masse d’aria (e quindi di polveri atmosferiche) verso l’Europa Centrale passando per l’Arco Alpino. Sembra invece che il controllo della NAO sui venti Alisei sia diverso, in quanto si osserva che il massimo di trasporto verso Ovest si ha intorno agli anni 1982-1984 (dati PRIDE e SSPI). La correlazione dei dati sopra citati con la variazione dell’anomalia di temperatura per l’Emisfero Nord, non sembra dare importanti informazioni, se non sottolineare la generale tendenza all’inaridimento, che comunque viene ad essere controllata non dalla temperatura quanto dal regime delle precipitazioni.
Per meglio evidenziare questa variazione dei trasporti, sono state calcolate le frequenze annuali degli eventi sahariani ricavati dai record del Colle del Lys. Sono stati presi in considerazione solamente quegli eventi che hanno concentrazioni superiori ad alcune soglie e considerati valori ben al disopra del valore medio di background. Purtroppo, in mancanza di una caratterizzazione mineralogica degli eventi, l’unico sistema per definire un evento sahariano è quello di valutarne la concentrazione. E’ stato quindi considerato come valore soglia 3 ppm di polveri misurate, che rappresenta comunque un valore di 10 volte superiore al valore medio del background. Anche la frequenza annuale degli eventi sahariani porta ad un stretto parallelismo con i record di dati sopra citati.
BIBLIOGRAFIA

MAURIZIO MAUGERI (*) & ELISABETTA MAZZUCHELLI (**)
CAMBIAMENTI CLIMATICI DI NATURA ANTROPICA:
VERITÀ SCIENTIFICA O TEORIA ANCORÀ DA DIMOSTRARE?

RIASSUNTO: MAUGERI M. & MAZZUCHELLI E., Cambiamenti climatici di natura antropica: verità scientifica o teoria ancora da dimostrare?

La recente pubblicazione del quarto rapporto dell’IPCC sullo stato dell’arte delle conoscenze relative ai cambiamenti climatici di origine antropica ha prodotto un intenso dibattito e, accanto a molti commenti favorevoli, non mancano osservazioni critiche, sia da parte di chi ritiene il documento troppo prudente, sia da parte di chi lo trova troppo catastrofista. Questa pluralità di posizioni genera purtroppo un grande disorientamento nell’opinione pubblica, anche perché non è facile, per chi non si occupa direttamente dell’argomento, capire quali commenti abbiano un fondamento scientifico e quali siano invece formulati solo per supportare interessi di parte. In questo contesto, il lavoro si propone di fornire alcuni elementi che consentano di capire meglio quali siano le “verità scientifiche” relative all’argomento e quali siano invece gli aspetti per i quali disponiamo solo di teorie ancora da verificare.

ABSTRACT: MAUGERI M. & MAZZUCHELLI E., Anthropogenic climate change: scientific truth or yet-to-be-demonstrated theory?

The recent publication of the IPCC AR4 concerning the state of the art of the knowledge on man-induced climate change has sparked an intense debate: together with many favourable comments, there are also some critical remarks, both by people who deem the document “too noncommittal” and by people who believe it to be “too catastrophic”. Unluckily, such a plurality of positions generates a remarkable disorientation in the public opinion especially because it is not easy, for people who are not directly involved in climate studies, to understand which remarks present a scientific fundament and which ones are uttered only in order to defend particular interests. In this context, this work aims at describing some basic elements allowing to better discern the “scientific truths” of the subject from the aspects of which we dispose only of theories yet to be verified.

(*) Università degli Studi di Milano – Dipartimento di Fisica, Via Celoria, 16 – 20133 Milano maurizio.maugeri@unimi.it
(**) Ipsia A. Parma, Via Mantegazza 25 - 21047 Saronno (VA) - e.mazzuchelli@ipsiaser.it
INTRODUZIONE

Nel corso dell’anno 2007 l’Intergovernamental Panel on Climate Change (IPCC), ovvero il noto organismo internazionale che provvede con cadenza circa quinquennale a documentare lo stato dell’arte delle conoscenze relative ai cambiamenti climatici in atto sul nostro pianeta, ha ultimato il suo quarto “assessment report”. La pubblicazione di questo documento ha prodotto un intenso dibattito e, accanto a molti commenti favorevoli, non sono mancate osservazioni critiche, sia da parte di chi ha ritenuto il documento troppo prudente, sia da parte di chi lo ha trovato troppo catastrofista. Questa pluralità di posizioni è stata peraltro ampiamente strumentalizzata ed eccessivamente enfatizzata dai mezzi di comunicazione di massa che hanno spesso dato grande risalto a posizioni estreme, frutto più di pregiudizi ideologici che di considerazioni di tipo scientifico. Il risultato è un grande disorientamento dell’opinione pubblica, naturale conseguenza del fatto che è veramente impossibile capire, alla luce delle sole informazioni fornite dai mezzi di comunicazione di massa, quali commenti abbiano un fondamento scientifico e quali siano invece formulati solo per supportare interessi di parte. In questo contesto, il presente contributo si propone di fornire, ad un livello divulgativo, alcuni elementi che permettano di capire meglio quali siano le “verità scientifiche” relative al tema dei cambiamenti climatici di natura antropica e quali siano invece gli aspetti per i quali disponiamo solo di teorie ancora da verificare.

BASI FISICHE DEL FENOMENO “EFFETTO SERRA”

Un primo importante dato da considerare è che le basi fisiche del fenomeno effetto serra sono note con estrema chiarezza. Per capire meglio questo fenomeno è necessario partire dal fatto che, in assenza di perturbazioni, il nostro Pianeta tende a raggiungere una situazione di equilibrio in cui l’energia fornita dalla radiazione solare che esso assorbe risulta uguale a quella dissipata dalla radiazione “terrestre” che esso emette verso lo spazio esterno. I termini di questo bilancio energetico hanno caratteristiche spettrali completamente diverse e, mentre la parte entrante presenta intensità massima nella regione del visibile, quella uscente è prevalentemente costituita da radiazione infrarossa. Ora, l’atmosfera è abbastanza trasparente alla radiazione visibile, ma ha una forte capacità di assorbire la radiazione infrarossa. La conseguenza di ciò è che solo una piccola parte della radiazione emessa dalla superficie terrestre e dagli strati inferiori dell’atmosfera riesce ad abbandonare il nostro Pianeta, mentre la parte preponderante viene assorbita dall’atmosfera sovrastante. Naturalmente anch’essa emette radiazione infrarossa di cui una parte
Il fenomeno effetto-serra è fondamentale per la vita sulla Terra, poiché consente di mantenere i temperatura adatti per l’esistenza degli organismi viventi. Il termometro alla Terra si accumula su un effetto serra, come per una finestra che lascia entrare la luce del sole e ne trattiene una parte per mantenere la casa calda. In questo modo, la Terra si trova in un equilibrio energetico che la rende idonea per la vita.

La figura 1 rappresenta graficamente il fenomeno effetto-serra. Ci si può immaginare l’atmosfera come un filtro che assorbe 10% della radiazione solare che trapassa l’atmosfera e trasmette l’80% della radiazione terrestre che viene poi assorbita dal suolo e dall’atmosfera sottostante. Questo fenomeno, che in sostanza determina un “intrappolamento” della radiazione infrarossa da parte dell’atmosfera, prende il nome di effetto serra. Esso non dipende dai costituenti primari dell’atmosfera, ma dal vapor acqueo e da una serie di costituenti minori (gas-serra) come il biossido di carbonio (CO2), il metano (CH4), il protossido di azoto (N2O) e i clorofluorocarburi (CFCs).

L’effetto serra gioca un ruolo molto importante sul bilancio energetico del nostro Pianeta tanto che se esso non fosse presente la sua temperatura media sarebbe di –17 °C, cioè oltre 30 gradi più bassa di quella attuale, impedendo di fatto la vita nelle forme che conosciamo. L’effetto serra è dunque un fenomeno naturale e necessario alla vita. Esso peraltro non è una caratteristica peculiare della Terra, ma riguarda anche altri pianeti del sistema solare. Il caso più evidente è sicuramente quello di Venere il quale, nonostante una fortissima capacità di riflettere la radiazione solare che compensa abbondantemente la sua maggiore vicinanza al Sole, presenta una temperatura di gran lunga più elevata di quella della Terra.

La figura 1 schematizza le basi fisiche del fenomeno effetto-serra. Per semplicità il comportamento dell’atmosfera viene qui equiparato a quello di un filtro capace di assorbire il 10% della radiazione solare e trasmettere l’80% della radiazione terrestre. In questi processi l’atmosfera ha assorbito un totale di 0.82 unità che vengono riemessi per metà verso la superficie terrestre e per metà verso lo spazio. La figura mostra come, iterando questo processo all’infinito, si ottenga un’emissione totale dalla superficie terrestre costituita dalla sommatoria di 0.90 + 0.41 + 0.16 + 0.07 + 0.03 + 0.01 +…. il cui risultato vale 1.58 unità. In queste condizioni dunque l’equilibrio fra la radiazione entrante e quella uscente si ha quando la superficie terrestre emette 1.58 volte di più di ciò che entra nel sistema terra-atmosfera.
Lo schema presentato in fig. 1, pur nella sua estrema semplicità, coglie l’essenza del fenomeno “effetto serra” ed evidenzia bene l’intrappolamento della radiazione ad onda lunga da parte dell’atmosfera. Esso evidenzia inoltre come la capacità dell’atmosfera di assorbire la radiazione ad onda lunga giochi un ruolo determinante nel definire l’emissione totale dalla superficie terrestre necessaria per bilanciare la componente entrante del bilancio radiativo del nostro Pianeta. Se ora consideriamo che la radiazione emessa dalla superficie di un pianeta dipende dalla sua temperatura, comprendiamo in modo chiaro il forte legame che esiste tra la capacità dell’atmosfera di assorbire la radiazione ad onda lunga e la temperatura superficiale.

EVIDENZE OSSERVATIVE

Il primo e fondamentale dato che le osservazioni mettono in evidenza è che alcuni importanti gas-serra presentano una significativa crescita delle concentrazioni in atmosfera dovuta alle attività dell’uomo (Fig. 2). L’aumento delle concentrazioni atmosferiche dei gas-serra è ben evidenziato dai dati relativi al biossido di carbonio. La concentrazione di questo composto è in costante aumento da oltre 150 anni e, se prima della Rivoluzione Industriale le molecole di CO₂ costituivano solo lo 0.027% delle molecole presenti in atmosfera, oggi questa percentuale è salita allo 0.038%, un valore che probabilmente non è mai stato raggiunto negli ultimi 20 milioni di anni.
Un altro dato di grande importanza evidenziato dalle osservazioni è che nel corso degli ultimi 100-150 anni il clima della terra ha manifestato un progressivo riscaldamento che è solitamente indicato con il termine "global warming" (fig. 3). I dati di cui disponiamo per descrivere questo fenomeno provengono da migliaia di stazioni con serie di osservazioni spesso lunghe più di 100 anni, che coprono praticamente l’intero pianeta (fig. 4). Essi mostrano con chiarezza come il periodo 1988-2007 sia indubbiamente stato il ventennio più caldo dell’intero periodo per il quale sia disponibile un ragionevole numero di osservazioni strumentali, con un notevole incremento della temperatura rispetto ai livelli caratteristici della seconda metà del XIX secolo. In questo periodo si è anche verificato l’anno più caldo (1998) con 0.57 gradi in più rispetto alla media del periodo 1961-1990, nonché 17 dei 20 anni più caldi del periodo 1856-2007. I dati mostrano anche come il riscaldamento sia concentrato soprattutto nei periodi 1910-1945 e 1975-2000.

L’esatta quantificazione dell’incremento della media planetaria della temperatura dell’aria in prossimità della superficie terrestre avvenuto nel corso degli ultimi 100-150 anni non è semplice in quanto i dati sono affetti da significative incertezze, dovute al fatto che le serie storiche di dati meteorologici sono influenzate da disomogeneità ed errori indotti sia dagli strumenti di misura che dalle metodologie di osservazione. Proprio per questa ragione, accanto alla migliore stima, è necessario fornire un’indicazione del margine di incertezza. Ciò si fa solitamente individuando un intervallo entro il quale si ritiene che il segnale da determinare abbia il 95% di probabilità di collocarsi effettivamente. Il risultato viene quindi espresso quantificando tale incremento in 0.7 ± 0.2 °C.
Anche se il trend a lungo termine della temperatura globale in prossimità della superficie terrestre risulta ormai acquisito, molti progetti di ricerca volti alla ricostruzione della variabilità e dei cambiamenti climatici sono in corso in tutto il mondo. Essi si propongono i) di estendere l’orizzonte temporale, cercando di arrivare ad un periodo dell’ordine dei 200-250 anni, ii) di migliorare la risoluzione spaziale, cercando di passare da un’informazione globale ad una regionale o, meglio ancora, locale, iii) di ampliare lo spettro delle variabili meteorologiche, considerando accanto alle variabili più studiate (temperature, pressioni e precipitazioni), variabili come la copertura nuvolosa, l’eliofania, l’umidità ecc… Un ulteriore importante obiettivo della ricerca consiste nella riduzione dell’errore relativo alle valutazioni dei trend a lungo termine delle variabili meteorologiche. A questo proposito, molti importanti risultati sono già stati ottenuti nel corso degli ultimi 5/10 anni ed è presumibile che nel prossimo futuro si arriverà ad ulteriori miglioramenti.

La fig. 5 mostra, a titolo di esempio, uno dei risultati di un ampio programma di ricerche condotto nel corso degli ultimi 10 anni presso l’Università degli Studi di Milano e l’ISAC-CNR con l’obiettivo di documentare e di studiare la variabilità e i cambiamenti del clima italiano nel corso degli ultimi due secoli.

Il global warming sembra confermato, oltre che dai dati degli ultimi 150 anni, anche da studi relativi a periodi più lunghi, per quanto in questo caso si abbiano maggiori incertezze. Questi studi vengono svolti assemblando i dati strumentali (la più antica serie di dati meteorologici è quella dell’Inghilterra Centrale che risale al 1659), con informazioni ricavabili da antiche testimonianze (per esempio cronache relative alla transitabilità di certi valichi alpini, diari con annotazioni relative alle date delle vendemmie ed alla qualità dei vini, dipinti raffiguranti i principali ghiacciai alpini, ecc…) e con indici che si possono ricavare dagli archivi naturali (anelli degli alberi, carote di ghiaccio, coralli, ecc…). Questi studi consentono di arrivare a stimare l’andamento della temperatura per un periodo di circa 1000 anni (fig. 6). Per quanto i dati stimati con questo metodo siano più incerti di quelli relativi agli ultimi 100-150 anni, essi consentono di affermare che il global warming ha portato la temperatura, da valori relativamente bassi, ad un massimo nel ventennio 1988-2007 che risulta il massimo assoluto dell’intero millennio.

Accanto ad un incremento della temperatura, nel corso degli ultimi decenni, si sono osservati significativi cambiamenti anche per altre grandezze meteorologiche. Di particolare rilievo risulta il segnale relativo alle precipitazioni. Per questo parametro, oltre ad un debole incremento alle medie e alte latitudini dell’Emisfero Settentrionale, si osserva, per molte aree, una tendenza a manifestare un maggiore numero di eventi precipitativi di forte intensità. Tra queste aree vi è l’Italia i cui dati sono stati studiati nell’ambito del già citato programma di ricerche dell’Università degli Studi di Milano e dell’ISAC-CNR (fig. 7). Il fenomeno andrà seguito con grandissima attenzione nel corso dei prossimi anni in quanto il nostro Paese, in virtù di svariati elementi caratteristici quali la presenza della catena alpina ed appenninica, la vicinanza al Mediterraneo e l’elevata densità della popolazione, ha una naturale propensione al rischio alluvioni, il che lo rende criticamente esposto ad un eventuale incremento degli eventi precipitativi di forte intensità. Contemporaneamente all’incremento delle precipitazioni di forte intensità, peraltro, in Italia si osserva anche un incremento della frequenza e della durata degli eventi sicciosi.

FIG. 7 - Nel corso degli ultimi anni si è sempre più consolidata l’ipotesi che il riscaldamento globale possa essere accompagnato da un incremento nella frequenza dei fenomeni meteorologici estremi. Questi fenomeni possono causare effetti disastrosi, come nel caso delle alluvioni che hanno colpito il Nord-Ovest dell’Italia nel 1993, 1994 e 2000. La figura mostra la Dora Baltea al Ponte Vecchio di Ivrea in condizioni “normali” (a sinistra) e come essa appariva durante la piena del 24 settembre 1993 (a destra) (da Nimbus, 2, pag. 44).

Un’ultima informazione fornita dalle osservazioni è che il riscaldamento degli ultimi 100-150 anni non è mostrato solo dalle serie di dati meteorologici, ma risulta documentato anche da numerosissime altre evidenze sperimentali come, per esempio, la forte riduzione volumetrica dei ghiacciai montani in quasi tutto il Pianeta.
LA COMPLESSITÀ DEL SISTEMA CLIMATICO

L’aumento delle concentrazioni atmosferiche dei gas-serra ed il contemporaneo incremento della temperatura sembrerebbero indicare che il global warming possa essere attribuito con “certezza” all’alterazione della composizione dell’atmosfera dovuta alle attività antropiche. Quando però si cerca di passare da una descrizione qualitativa del fenomeno ad un’analisi quantitativa ci si rende immediatamente conto dell’enorme complessità del problema e dei molti aspetti che devono ancora essere approfonditi.

Un primo problema è costituito dal fatto che, accanto ai gas-serra, vi sono numerosi altri fattori, di carattere sia naturale che antropico in grado di influenzare il bilancio energetico del nostro Pianeta. È peraltro importante sottolineare come anche il solo contributo delle emissioni antropiche al bilancio energetico della Terra risulti molto più complesso di quello dovuto ai soli gas serra, in quanto, accanto ai gas-serra, l’uomo ha emesso, e continua ad emettere, altri composti come, per esempio, il biossido di zolfo (SO₂) in grado di formare in atmosfera particelle di piccolo diametro. Queste particelle potrebbero aver aumentato la capacità dell’atmosfera di riflettere la radiazione solare prima che essa giunga al suolo, alterando quindi il bilancio energetico con un effetto opposto a quello dei gas-serra. L’effetto degli aerosol atmosferici sul bilancio energetico del Pianeta è purtroppo molto difficile da quantificare in quanto, oltre ad interagire direttamente con la radiazione, essi hanno anche importanti conseguenze sulla formazione delle nubi. È pertanto possibile che l’incremento delle particelle presenti in atmosfera abbia determinato un incremento della nuvolosità.

Il modo più semplice per cercare di valutare in modo quantitativo quale possa essere stato l’effetto dei vari fattori che potrebbero aver contribuito ad alterare il clima della Terra nel corso degli ultimi due/tre secoli consiste nell’utilizzo di modelli matematici in grado di capire come ogni singolo fattore possa aver contribuito a “rompere” il naturale bilancio tra la radiazione solare che giunge sul nostro pianeta e quella terrestre che viene riemessa verso lo spazio esterno. Questi strumenti, concettualmente simili al semplicissimo modello descritto in fig. 1, vengono utilizzati alterando i vari fattori dalle condizioni tipiche del periodo precedente alla Rivoluzione Industriale a quelle odierne. Le simulazioni vengono effettuate considerando un fattore alla volta ed assumendo che il sistema Terra non metta in atto nessun meccanismo per rispondere alla rottura del bilancio tra la radiazione entrante e quella uscente. Il risultato delle simulazioni fornisce quindi una stima (espressa in Watt per metro quadrato) di quanto vari fattori (antropici e naturali) possano aver contribuito a rompere il naturale bilancio energetico del nostro Pianeta. Questo dato rappresenta il forcing radiativo dovuto ad ognuno dei fattori che si ritiene possano aver contribuito ad alterare il clima della Terra (fig. 8).
FIG. 8 - L’incremento dei gas serra non è l’unico fenomeno in grado di influenzare il bilancio energetico del nostro Pianeta. Accanto ad esso, sono da segnalare il decremento dell’ozono stratosferico (forcing negativo), l’incremento dell’ozono troposferico (forcing positivo), l’incremento di vapor acqueo in stratosfera (forcing positivo), i cambiamenti nella riflettività della superficie terrestre (forcing dipendente dal tipo di effetto considerato), il ruolo degli aerosoli (forcing negativo), il ruolo dell’azione (forcing positivo) e la variabilità nell’intensità della radiazione proveniente dal sole (forcing positivo). La figura dà anche una stima del livello delle conoscenze relative a tali fenomeni, indicando il “LOSU”, ovvero il “Level Of Scientific Understanding”. Esso è elevato per i gas serra, medio per l’ozono in stratosfera ed in troposfera e basso o medio basso per tutti gli altri fenomeni. La figura, infine, fornisce un’indicazione sulla scala spaziale alla quale i vari fenomeni si manifestano e fornisce un’indicazione sull’incertezza con cui sono noti i forcing relativi ai vari fenomeni; in questo caso gli errori vengono mostrati indicando gli intervalli al cui interno i valori effettivi hanno il 90% di probabilità di collocarsi effettivamente (da IPCC, 2007 - Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [SOLOMON S., QIN D., MANNING M., CHEN Z., MARQUIS M., AVERYT K.B., TIGNOR M. & MILLER H.L. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 9% pp.).

I risultati di queste simulazioni attribuiscono alla crescita delle concentrazioni dei gas serra registrata nel corso degli ultimi due/tre secoli un forcing radiativo di oltre 2.5 W/m². Accanto a questo dato però si hanno anche valori di forcing negativo come quelli relativi agli effetti diretti ed indiretti degli aerosol atmosferici. Il risultato complessivo viene quindi stimato pari a 1.6 W/m². Questo dato però è soggetto a significativa incertezza e pertanto, più che la migliore stima, è necessario fornire l’intervallo entro il quale il valore corretto abbia una data probabilità di collocarsi effettivamente o, meglio ancora, è necessario fornire la distribuzione di pro-
babilità che si attribuisce a questo valore. Questa distribuzione di probabilità è mostrata in figura 9. In altri termini, la figura 9 evidenzia come dicendo che il forcing complessivo si collochi tra 0.6 e 2.4 W/m² si ha “solo” il 10% di probabilità di fare un’affermazione non corretta. Si vede quindi che le stime di forcing radiativi sono ancora affette da errori non piccoli.

In realtà, anche se disponessimo di stime affidabili dei contributi di tutti i fattori in grado di influire sul bilancio energetico della Terra, le nostre valutazioni relative ad eventuali cambiamenti climatici sarebbero comunque affette da significative incertezze in quanto, come già visto, nei modelli radiativi le simulazioni vengono effettuate assumendo che il sistema Terra non metta in atto nessun meccanismo per rispondere alla rottura del naturale bilancio tra la radiazione entrante e quella uscente. Questa ipotesi non è ovviamente vera in quanto il nostro Pianeta tende a
rispondere a qualsiasi perturbazione che alteri i suoi equilibri. Per esemplificare questo concetto assumiamo che il Pianeta risponda ad un forcing radiativo positivo con un aumento della temperatura, un conseguente aumento dell’evaporazione dagli oceani e un incremento della nuvolosità. Se ciò si verificasse il Pianeta risponderebbe ad un forcing positivo con un effetto in grado di determinare un forcing negativo; in questo caso si parlerebbe di feedback negativo, vale a dire di un processo che il sistema climatico attiva per mantenersi in equilibrio. Accanto a possibili feedback negativi esistono però anche possibili feedback positivi, come, per esempio, quello connesso con una minor capacità di stoccaggio di CO₂ da parte degli oceani, causato da un incremento della loro temperatura. Risulta quindi evidente come una corretta descrizione dell’effetto dei vari fattori in grado di alterare il clima terrestre richieda l’utilizzo di strumenti che siano anche in grado di modellizzare i precedenti feedback.

La modellizzazione matematica di un fenomeno consiste nello schematizzare tale fenomeno in modo che esso possa venire descritto da poche leggi fisiche fondamentali. Tali leggi vengono poi rappresentate per mezzo di equazioni la cui soluzione consente di capire come il fenomeno evolvi in funzione delle condizioni iniziali e di ciò che avviene nel "mondo" che lo circonda. Questo schema si può applicare a molti fenomeni geofisici; l’applicazione forse più conosciuta è costituita dalle previsioni del tempo che consistono nel prevedere l’evoluzione della circolazione atmosferica in funzione dello stato dell’atmosfera in un determinato istante iniziale. Vi sono però numerosissime altre applicazioni; così si costruiscono modelli per descrivere il moto dell’oceano, per schematizzare il ciclo del carbonio, per comprendere l’evoluzione dei ghiacci terrestri e marini, ecc…. Ora, l’aspetto che rende particolarmente problematica la modellizzazione dei fenomeni geofisici è che il sistema Terra è costituito da vari comparti (atmosfera, idrosfera, litosfera, criosfera e biosfera) che, oltre ad essere di per sé sistemi complessi, interagiscono anche profondamente tra loro (fig. 10). Queste profonde interazioni fanno sì che una corretta modellizzazione del sistema richieda la costruzione di modelli integrati che consentano di descrivere, accanto a ciò che avviene nei singoli comparti, anche le reciproche interazioni. Ciò rende il problema molto complicato e fa sì che, nonostante i grandi sviluppi avuti nel corso dell’ultimo decennio, la nostra capacità di modellizzare il clima risulti ancora piuttosto limitata.
La previsione di ciò che accadrà in futuro presenta aspetti di grande complessità. Il primo passo consiste nel riuscire a prevedere come evolveranno le emissioni. Esse dipendono sia da fattori socio-economici (popolazione, prodotto interno lordo, ecc…) sia da aspetti tecnologici che determinano le emissioni procapite o per unità di prodotto interno lordo (interventi sui processi di combustione, misure di risparmio energetico, ricorso a combustibili alternativi, ecc…..). Le emissioni si ripercuotono quindi sulle concentrazioni nell’atmosfera, anche se il legame tra ciò che viene emesso e ciò che si accumula in atmosfera non è semplice, ma va descritto con opportuni modelli matematici. Nota l’evoluzione delle concentrazioni, si può poi stimare, ancora facendo ricorso a modelli, l’evoluzione dello stato dell’atmosfera. Si può quindi fissare un anno finale di riferimento (per esempio il 2100) e calcolare quali valori medi ci si aspetta debbano assumere i principali parametri meteorologici. Ciò consente di effettuare una simulazione del clima di quell’anno e quindi, attraverso il confronto con il clima attuale, di stimare i cambiamenti attesi e di valutare l’eventuale impatto di tali cambiamenti (Figura 11).
Anche se concettualmente relativamente semplice, questa procedura presenta grande complessità sia per le difficoltà di prevedere cosa accadrà sul nostro Pianeta in un così lungo arco di tempo, sia perché, come già visto, i modelli che utilizziamo per simulare il comportamento del sistema climatico presentano ancora numerose lacune.

I precedenti limiti fanno sì che gli scenari di cambiamento climatico che la comunità scientifica è attualmente in grado di produrre per il futuro siano ancora soggetti a grande incertezza. Questa incertezza, frutto della nostra ancora molto parziale capacità di comprendere e descrivere il sistema climatico, giustifica una certa prudenza da parte degli esperti e spiega la ragione per cui vari ricercatori invitano a non trarre concluzioni affrettate in merito ai cambiamenti climatici di natura antropica. Accanto ad un doveroso invito alla prudenza, è però anche necessario sottolineare che i modelli matematici costituiscono oggi l'unico strumento di cui disponiamo per effettuare proiezioni sulle possibili risposte del clima all'aumento delle concentrazioni atmosferiche dei gas-serra. In queste condizioni è naturale che vi sia una discussione in corso sull'effettivo utilizzo dei dati prodotti con questi modelli e che vi siano sfumature di pensiero diverse tra chi ne rimarca maggiormente i limiti e chi ne sottolinea soprattutto le potenzialità.

Discussioni di questo tipo vengono purtroppo spesso riportate in modo completamente distorto dai mezzi di comunicazione di massa e vengono presentate come se, accanto alla reale significatività delle proiezioni climatiche, venissero messe in discussione le basi fisiche del fenomeno effetto-serra e le molte evidenze sperimentali relative sia all'incremento delle concentrazioni atmosferiche dei gas-serra che al global warming.
CONCLUSIONI

Alla luce dei molti elementi per i quali disponiamo di conoscenze ormai consolidate e degli altrettanto numerosi problemi ancora aperti, appare chiaro che non hanno alcun fondamento scientifico né le posizioni di chi nega il riscaldamento di origine antropica, né quelle di chi considera “verità scientifiche” i dati quantitativi ottenuti per mezzo dei modelli utilizzati per “prevedere” lo stato futuro del clima del Pianeta. Le attuali conoscenze scientifiche, tuttavia, anche se non in grado di fornire stime quantitative completamente affidabili per il futuro, sono più che sufficienti per giustificare una profonda preoccupazione e per indurre ad agire con decisione, concretezza e tempestività, mettendo in atto una pluralità di interventi volti a ridurre in modo significativo le emissioni dei gas-serra. Questa riduzione di emissioni dovrà naturalmente andare molto al di là dei modestissimi obiettivi proposti dal protocollo di Kyoto. Contemporaneamente all’adozione di efficaci provvedimenti per il controllo delle emissioni di gas-serra, l’uomo dovrà mettere in atto un grande sforzo scientifico per ottenere una più approfondita conoscenza del sistema Terra. Questo sforzo richiederà sicuramente lo sviluppo di nuovi modelli di simulazione e previsione climatica e l’utilizzo di risorse di calcolo e di metodi numerici sempre più avanzati. Indissolubilmente legato alla parte modellistica e d’importanza forse ancora maggiore, risulta lo sviluppo delle osservazioni, in quanto solo la minuziosa osservazione di ciò che accade nel presente e di ciò che è accaduto nel passato nei diversi comparti del sistema Terra può consentirci di capire quali siano i processi e le interazioni fondamentali da considerare ai fini di una corretta comprensione dell’evoluzione delle condizioni dell’atmosfera.
Progetto grafico e realizzazione: Centro stampa Consiglio Regionale della Lombardia